Key Concepts Document

This document contains the Key Concepts for the SC2x course. The KCD meant to complement, not replace, the lesson videos and slides. They are intended to be references for you to use going forward and are based on the assumption that you have learned the concepts and completed the practice problems.

This document was updated by Dr. Sergio Caballero in the summer of 2018.

This is a draft of the material, so please post any suggestions, corrections, or recommendations to the Discussion Forum under the topic thread “Key Concept Documents Improvements”.

Thanks,

Chris Caplice, Eva Ponce and the SC2x Teaching Community
Table of Contents

Introduction to Supply Chain Design
- Review of SC1x Concepts
- References

Supply Chain Network Design Models
- Network Models
- Facility Location Models
- Supply Chain Network Design
- Advanced Supply Chain Network Design Topics
- Practical Considerations in Supply Chain Network Design

Production Planning
- Fixed Planning Horizon
- Material and Distribution Requirements Planning

Connecting Sales to Operations
- Aggregate Planning Model
- Monthly Sales & Operations Planning Process
- Distribution and Channel Strategies

Supply Chain Sourcing
- Procurement Strategy
- Procurement Optimization

Supply Chain Finance
- Accounting Fundamentals
- Costing Systems
- Supply Chain Cash Flows
- Discounted Cash Flow Analysis
- Defining Supply Chain Finance
- Analyzing Financial Performance

Organizational, Process, and Performance Metric Design
- Supply Chain Organization Design
- Supply Chain Metric Design
List of Figures

Figure 1. Product forecasting ... 5
Figure 2. Supply Chain Operations Reference (SCOR) Model ... 7
Figure 3. Fitting SCND into the bigger picture ... 20
Figure 4. Bill of materials ... 29
Figure 5. Channel types ... 35
Figure 6. Distribution design options ... 36
Figure 7. Omni-Channel network design model .. 39
Figure 8. Product recovery options ... 40
Figure 9. Reverse flow recovery options ... 41
Figure 10. Differences between forward and reverse logistics 42
Figure 11. Battery recycling network ... 42
Figure 12. Battery recycling mathematical formulation ... 43
Figure 13. The price iceberg ... 45
Figure 14. Risk-spend framework .. 46
Figure 15. Procurement strategies .. 46
Figure 16. Lifetime cost of capital items ... 48
Figure 17. How does Supply Chain Finance work? .. 64
Figure 18. Basic factoring .. 65
Figure 19. High-level shareholder value map (Deloitte methods) 68
Figure 20. The Balanced Scorecard Strategy Map ... 68
Figure 21. Drivers of shareholder value .. 69
Figure 22. Performance dimensions .. 76
Figure 23. Performance criteria trade-offs .. 76
Figure 24. Balanced metric system .. 77

List of Tables

Table 1. One time run production plan ... 25
Table 2. Lot for lot production plan ... 25
Table 3. Fixed order quantity production plan ... 26
Table 4. Periodic order quantity production plan .. 27
Table 5. Options for liquidity in the Supply Chain ... 66
Table 6. Potential comparison areas on each statement .. 69
Table 7. Supply chain processes .. 75
Introduction to Supply Chain Design

Summary
Supply Chain Design is as much an art as it is science. Science because we can quantify the impact of different choices and find the optimal trade-offs between different choice parameters. But also, an art because the assumptions we make are never going to completely match reality, and because the data we use for our models is never going to be completely accurate. There is no single right way of making these assumptions – doing this in a “good” way for a particular problem is more art than science!

Still, we learned that there are some frameworks, tools, and methods to aid the design process. The course examines the flows in a supply chain, with each design issue discussed in a separate module:

- **Design of Physical Flows.** How should materials flow through the supply chain? We will model physical flows taking into account the costs of transportation and facilities. We will balance costs and service using Mixed Integer Programs. However, key is in not just solving the models, but in interpreting the results. Remember, the tools are decision-support tools, they are intended to support decisions, not make them for us!

- **Design of Financial Flows.** How to translate supply chain concepts and actions into the language of the CFO (Chief Financial Officer)? We will go through activity-based costing, cash flow analysis and capital budgeting to better understand how supply chain design decisions translate to changes in the income statement and the balance sheet.

- **Design of Information Flows.** For this module, we will follow the SCOR-model’s three phases of Source, Make, and Deliver. How should you work with suppliers? How should information be coordinated between different manufacturers, internal and external? And how should you coordinate and collaborate with customers? In this module strategies and procedures for this is discussed.

- **Designing the organization.** How should a supply chain be organized? We will investigate supply chain processes and how the measuring of the performance of the processes create different incentives. We will also discuss organizational structure.

Key Concepts
- **Supply Chains** - Two or more parties linked by a flow of resources that ultimately fulfill a customer request.
- **Supply Chain Flows** – physical flows, financial flows, and information flows. All are important to consider when designing a supply chain.
Review of SC1x Concepts

Demand forecasting

Forecasting truisms:
- Forecast are always wrong – use ranges and track forecast error
- Aggregate forecasts are more accurate – risk pooling reduces coefficient of variation
- Shorter time forecasts are more accurate – postpone customization as late as possible

Inventory management

Inventory is generally managed using one of two key types of policies: continuous review or periodic review.
- **Continuous review** means that the inventory position is continuously supervised (presumably by software). As soon as the inventory position reaches a predetermined level s a replenishment order of Q units is placed. Consequently, the time between orders is uncertain.
- **Periodic review** means that the inventory position is reviewed at certain reoccurring points in time, such as every evening after a retailer closes the store. Based on the current inventory position, a replenishment order is placed to bring the inventory position up to a pre-determined level S. Consequently, the order quantity is uncertain.

Both policies are used when decisions are made for a long horizon, where the items can be stored between periods of replenishment, but demand in each replenishment period is uncertain.
Transportation
There are several ways of organizing the transportation in a supply chain. Among them:
- One-to-one: direct point-to-point movements from origin to destination, e.g. daily full van loads to each customer
- One-to-many: multi-stop moves from a single origin to many destinations
- Many-to-many: moving from multiple origins to multiple destinations usually with a hub or terminal – this decouples line haul (from e.g. a supplier to a terminal) from local delivery operations (from e.g. a terminal to stores)

Total cost equation
The total cost equation specifies the total logistics cost for a system for an arbitrary time period:

Total cost = Purchase Cost + Order (Set Up) Cost + Holding (Carrying) Cost + Shortage Cost

- Purchase: Cost per item or total landed cost for acquiring product.
- Ordering: It is a fixed cost and contains cost to place, receive and process a batch of goods including processing invoicing, auditing, labor, etc. In manufacturing this is the set up cost for a run.
- Holding: Costs required to hold inventory such as storage cost (warehouse space), service costs (insurance, taxes), risk costs (lost, stolen, damaged, obsolete), and capital costs, both for units in-transit (pipeline inventory) and in warehouse (cycle stock + safety stock)
- Shortage: Costs of not having an item in stock including backorder, lost sales, lost customers, and disruption costs.

Notation
D: Demand rate (units/time)
Q: Order quantity (units)
L: Lead time (time)
σDL: Standard deviation of demand during the lead time
k: Safety stock factor
c: Purchase cost ($/unit)
ci: Ordering Costs ($/order)
h: Holding rate – usually expressed as a percentage ($/$ value/time)
cE: Excess holding Costs ($/unit-time); also equal to ch
cS: Shortage costs ($/unit)
TC: Total Costs – the sum of all four cost elements
We get that
\[
TC = cD + c_i \left(\frac{D}{Q} \right) + c_e \left(\frac{Q}{2} + k \sigma_{DL} + DL \right) + c_s P[\text{StockOutType}]
\]

From the formula we see that transport speed as well as forecast accuracy has an impact on total cost through the inventory costs.

Fisher’s model: Innovative versus functional products

When designing a supply chain, the design needs to be adapted to the type of products it is intended for. In Fisher’s model, products can be classified as being either more Functional or more Innovative.

- **Functional**: predictable demand, long life cycle, low margin, low error in production, low stock-out rates
- **Innovative**: unpredictable demand, short life cycle, high margin, high error in production, high stock-out rates

As a rule of thumb, functional products should have a design focusing more on efficiency, whereas innovative products should have a supply chain design focusing more on matching supply with demand.

Remember that these are not hard and fast rules. In practice there are, of course, many products that share characteristics with both segments. Most firms are going to have a portfolio of supply chains. Further, innovative products often move into becoming more functional as their markets become more mature. This requires adaptation of the supply chain design. For instance, when the patent protection for the cholesterol lowering drug Lipitor went out, Pfizer had to reduce the price to protect the drug from generic competition. With a lower margin, the supply chain must be design with a higher focus on efficiency.

SCOR-model

The Source-Make-Deliver process of the SCOR-model describes the business processes required to satisfy customers’ demand.
Learning Objectives

- Identify physical, financial, and information flows inherent to supply chains
- Recap SC1x: demand forecasting, inventory management, transportation
- How to approach Supply Chain Design for different products and companies

References

Supply Chain Network Design Models

Summary
We review supply chain network design. Sometimes it is referred to as network modeling because you need to build a mathematical model of the supply chain. This model is then solved using optimization techniques and then analyzed to pick the best solution. Specifically, we will focus on modeling the supply chain to determine the optimal location of facilities (plants, warehouses, etc.) and the best flow of products through this facility network structure.

Key Concepts

Network Models

Network models are a useful class of models that can be utilized to aid many types of supply chain decisions. We review the basic notations of these models and show how to set up a simple spreadsheet model in Excel or Libre Office to solve the model. We focus on two types of models that are relatively simple yet powerful in deriving insights to support supply chain design decisions: the Transportation Problem and the Transshipment Problem.

Both the transportation problem and the transshipment problem consider an underlying network of nodes (facilities) and arcs (transport flows between facilities). The objective is to minimize costs for a given period (day, week, year) by choosing the number of units to be shipped/transported on different arcs during the period to fulfill demand, while meeting the capacity constraints. Both problems can be formulated as linear programs (see below) and solved using your spreadsheet software of choice (e.g. Excel or Libre Office). For details on how to run the solver, please refer to the separate guide for how to setup and run the solver, which is found in the course material.

We discuss some of the limitations to these network models. First, in the models review, we limited ourselves to variable costs for the arcs (i.e. transport costs per unit). Clearly, the cost structure for a network is, in practice, often more complex, involving costs that are both fixed or vary over different parameters. We also considered a single commodity – all plants produced perfectly substitutable goods. The demand was deterministic, that is, we assumed that demand was perfectly known for the entire period. Finally, we also assumed there was no capacity limits on the arcs, so that any amount could be transported. Clearly, all of these assumptions limit our results, so we have to be careful what inferences we make from the models. In the coming lessons we will relax some of these and also discuss how to make inference while still using a relatively simple model.

Also – we noted that transportation and transshipment problems may have several optima (the same value of the objective function is found by different value on the decision variables).
Depending on the algorithm and software, different optima may be the “first choice” of the algorithm.

Network terminology
- **Node or vertices** – a point (facility, DC, plant, region)
- **Arc or edge** – link between two nodes (roads, flows, etc.)
- **Network or graph** – a collection of nodes and arcs

The transportation problem
The transportation problem considers transports from \(i \) supply nodes to \(j \) demand nodes over arcs \(ij \). With each arc is associated a cost \(c_{ij} \). The number of units transported on each arc \(ij \) is denoted \(x_{ij} \). These \(x_{ij}'s \) are our decision variables – we want to find the amounts for each arc that minimizes total cost.

Let \(z \) be the objective function (i.e., the function expressing the total cost we want to minimize).

Notation

Indices
- Plants \(i \)
- Regions \(j \)

Input Data
- \(S_i = \) Available supply of sand from Plant \(i \) (tons) \(i \in S \)
- \(D_j = \) Demand for sand in Region \(j \) (tons) \(j \in D \)
- \(c_{ij} = \) Cost for sending sand from Plant \(i \) to Region \(j \) ($/ton) \(i, j \)

Decision Variables
- \(x_{ij} = \) Flow on arc from Plant \(i \) to Region \(j \) (tons) \(i, j \)

\[
\begin{align*}
\text{Min} & \quad z = \sum_i \sum_j c_{ij} x_{ij} \\
\text{s.t.} & \quad \sum_j x_{ij} \leq S_i \quad \forall i \in S \\
& \quad \sum_i x_{ij} \geq D_j \quad \forall j \in D \\
& \quad x_{ij} \geq 0 \quad \forall ij
\end{align*}
\]

These are the supply constraints – the total number of shipped units from a supply node \(i \) to all demand nodes \(j \) must be less than (or equal to) the supply capacity of node \(i \).

These are the demand constraints – the number of shipped units to a demand node \(j \) from all supply nodes \(i \) must be at least the demand at node \(j \).

These are the non-negativity constraints – we do not allow negative volumes on any arc.
The transshipment problem
The transshipment problem is similar to the transportation problem. The difference is that we now introduce a set of nodes that are neither supply nodes nor demand nodes, but transshipment nodes, meaning that over a period, anything that goes in to the transshipment node needs to come out.

Notation

Indices
- Origin \(i \)
- Destination \(j \)

Input Data
- \(S_i \) = Available supply of sand from Plant \(i \) (tons) \(i \in S \)
- \(D_j \) = Demand for sand in Region \(j \) (tons) \(j \in D \)
- \(c_{ij} \) = Cost for sending sand on arc from \(i \) to \(j \) ($/ton) \(i, j \)

Decision Variables
- \(x_{ij} \) = Flow on arc from \(i \) to \(j \) (tons) \(i, j \)

Min
\[
z = \sum_i \sum_j c_{ij} x_{ij}
\]

s.t.
\[
\begin{align*}
\sum_j x_{ij} &\leq S_i, \quad \forall i \in S \\
\sum_i x_{ij} &\geq D_j, \quad \forall j \in D \\
\sum_j x_{ij} - \sum_j x_{ji} &= 0, \quad \forall j \notin D, \notin S \\
x_{ij} &\geq 0, \quad \forall ij
\end{align*}
\]

Note that we have the same formulation as for the transportation problem but with one difference: a third constraint has been added (highlighted). This constraint is the constraint forcing the transshipment node to be “empty” – the conservation of flow constraint. Consider transshipment node \(j \). The first sum in the constraint is then the total number of units shipped to node \(j \) from all other nodes \(i \). The second sum is the total number of units shipped from node \(j \) to all other nodes \(i \). The constraint says that this difference must be zero.

Facility Location Models

In the previously introduce models we assumed that every facility in the network was used. We now relax that assumption. First, we review where to locate a facility, given that we need a single facility. We then investigate how many (and which) facilities to use, given a set of candidates. Lastly, we review how to incorporate explicit Level Of Service (LOS) constraints in our models, to identify certain cost and service trade-offs in more detail.

For the single facility case we look at two fundamentally different ways of approaching the
decision. The first was by considering all points in the Euclidian space as potential candidates, and search for an optimal location for a facility anywhere in this space. For this we use both the center-of-gravity- method and the Weber method. While the former has an intuitive appeal, the Weber method is more appropriate as it minimizes the actual transportation costs. The fundamental problem of relying on either of these methods, though, is that the optimal solution may end up in places that are not feasible for a wide number of reasons: lack of infrastructure (we could end up in a lake!), high construction costs, difficulty of getting permits etc. So while these methods are useful to get a ball park figure of where to locate the facility, they provide only a region to target.

We review another approach where, instead of considering the full Euclidian space, there is only a finite set of candidate locations. This problem can be approached using a Mixed Integer Linear Program (MILP), for which we can use a spreadsheet solver to find the solution.

MILP used to solve the single facility problem could be easily extended to investigate the case of multiple facilities. The model could then be used to answer both how many facilities to use, and which facilities to use.

Finally, we incorporate explicit LOS constraints in our models. Two types of service performance were considered: the average weighted distance to customers, and the amount of demand within a certain distance from a DC. We can specify bounds for these performance measures and include them in the MILP, to ensure that the optimal solution met the LOS requirements.

Continuous single facility problem
With a continuous single facility model, the aim is to find one optimal point in the Euclidian space.

Center of gravity. With a center of gravity model, we let the optimal point’s coordinates be given by weighted x and y coordinates, where the weight given to each node k is given by the demand in that node. For instance, if we want to find the optimal location for a DC that will support 3 stores, the optimal location will be given by the weighted coordinates of the stores, where each store’s coordinates are weighted by the demand at the store.

\[
\begin{align*}
x &= \sum_{k \in K} w_k x_k \\
y &= \sum_{k \in K} w_k y_k
\end{align*}
\]

Weber method. With the Weber method, instead of taking the weighted coordinates of the nodes, we try to minimize the weighted Euclidian distances between nodes k and location (x, y). The weights are still given by the demand at the different nodes.

\[
\text{Min } z = \sum_{k \in K} w_k d_k (x, y) = \sum_{k \in K} w_k \sqrt{(x - x_k)^2 + (y - y_k)^2}
\]
Where \(z \) is optimized by changing the decision variables \(x \) and \(y \).

Network facility location problem

When we have a number of candidate locations to choose between, we can create a network flow model to find which of the candidate locations provide the lowest cost. To do this, we formulate a Mixed Integer Linear Program (MILP). Our problem is MILP because it has a linear objective function and linear constraints, but with some variables being integers instead of continuous. The integer values are the \(Y_i \)'s that describe whether facility \(i \) is used \((Y_i = 1)\) or not \((Y_i = 0)\). Associated with each facility is a fixed cost for the time period, \(f_i \). As with the transportation problem, the number of units shipped between two nodes are given by the \(x_{ij} \)’s.

Notation

- \(M_{ij} \): An arbitrary large number, specific to each arc (but the value could be the same between arcs)
- \(P_{\text{min}} \): Minimum number of facilities
- \(P_{\text{max}} \): Maximum number of facilities

With \(z \) being the objective function, the problem is formulated as follows:

\[
\begin{align*}
\text{Min } z &= \sum_i \sum_j c_{ij}x_{ij} + \sum_i f_iY_i \\
\text{s.t.} & \quad \sum_j x_{ij} \leq S_i \quad \forall i \in S \\
& \quad \sum_i x_{ij} \geq D_j \quad \forall j \in D \\
& \quad x_{ij} - M_{ij}Y_i \leq 0 \quad \forall ij \\
& \quad \sum_i Y_i \geq P_{\text{MIN}} \\
& \quad \sum_i Y_i \leq P_{\text{MAX}} \\
& \quad x_{ij} \geq 0 \quad \forall ij \\
& \quad Y_i = \{0,1\} \quad \forall i
\end{align*}
\]

These are the supply and demand constraints
These are the *linking constraints* – to ensure that we do not allocate shipments to a location that is not used, the units shipped on an arc must be less than (or equal to) a large number times the \(Y \) associated with the node where the transport originates
These are constraints on the number of facilities to use – the sum of the \(Y \)-variables will be the total number of facilities in use
These are the non-negativity constraints (for \(x \)'s) and the binary constraints (for the \(Y \)'s)

Note that for a single facility location problem, we let \(P_{\text{MIN}} = P_{\text{MAX}} = 1 \).

Multiple location selection model

For this we use the same MILP as for the network facility location problem above. If we have a given number of locations we want to choose, we let \(P_{\text{MIN}} = P_{\text{MAX}} = k \), where \(k \) is the number of locations. If we instead want to find the optimal number of locations, we remove the constraints on the sum of \(Y \).
Enforcing LOS
To create enforcing LOS, we use the same basic setup as before, with the highlighted addition:

\[S_i = \text{Available supply at DC i (units)} \quad i \in S \]
\[D_j = \text{Demand by Customer j (units)} \quad j \in D \]
\[c_{ij} = \text{Cost to serve Customer j from DC i ($/unit)} \quad i, j \]
\[f_i = \text{Fixed cost for opening DC i ($)} \quad i \in S \]
\[P_{MIN} = \text{Minimum number of DCs required to open} \]
\[P_{MAX} = \text{Maximum number of DCs allowed to open} \]
\[M = \text{A really big number, but not too big!} \]
\[d_{ij} = \text{Distance to Customer j from DC i (miles)} \quad i, j \]
\[a_{ij} = 1 \text{ if Customer j to DC i} \leq 50 \text{ miles, } =0 \text{ otherwise } \quad i, j \]
\[\text{MaxAvgDist} = \text{Max allowable average distance DCs to Customers} \]
\[\text{MinPctIn50} = \text{Min allowable demand within 50 miles of a DC} \]

\[
\begin{align*}
\text{Min} \quad z &= \sum_i \sum_j c_{ij} x_{ij} + \sum_i f_i Y_i \\
\text{s.t.} \quad \\
&= \sum_j x_{ij} \leq S_i \quad \forall i \in S \\
&= \sum_i x_{ij} \geq D_j \quad \forall j \in D \\
&= x_{ij} - M_{ij} Y_i \leq 0 \quad \forall ij \\
&= \sum_i Y_i \geq P_{MIN} \\
&= \sum_i Y_i \leq P_{MAX} \\
&= \sum_j \left(\frac{d_{ij} x_{ij}}{\sum_j D_j} \right) \leq \text{MaxAvgDist} \\
&= \sum_j \left(\frac{a_{ij} x_{ij}}{\sum_j D_j} \right) \geq \text{MinPctIn50} \\
&= x_{ij} \geq 0 \quad \forall ij \\
&= Y_i \in \{0,1\} \quad \forall i
\end{align*}
\]

Note that two constraints were added (highlighted).
- **A constraint on the average weighted distance**: This constraint takes the (demand)-weighted average distance and ensures that it is less than or equal to some critical level \(\text{MaxAvgDist} \), the maximum allowed average weighted distance. Consequently, the model will make sure that the average customer is not “too far away”.

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
A constraint on the amount of demand within a certain distance: The previous constraint considers only the average, which means that we do not know how much of our demand has an LOS below a certain threshold. For instance, even if we know that the average distance is less than 50 miles, we may be interested in ensuring that at least 75% of our demand is less than 50 miles from a DC. This constraint ensures that. For this we need to specify a distance (say 50 miles). The binary variable a_{ij} then denotes whether or not a certain link is shorter ($a_{ij}=1$) than 50 miles or not ($a_{ij}=0$). That is, the constraint ensures that not “too many” customers are far away.

It is also important to note that when we introduce service constraints, we may need to introduce binding constraints on the demand. If not, the model may try to enforce the service constraint by delivering more than demanded to certain demand nodes. This will however be artificial (and unsold) demand. To ensure this is not the case, let the demand constraint be given by equality, instead of the computationally more efficient inequality.

Supply Chain Network Design

We now combine the different techniques learned into one model. We take network optimization and combine it with the facility location models together into what's known as a supply chain network design model.

Data collection: Transportation Data
The first step in building the model is to collect data. For transports, we want to know the costs and capacities associated with both inbound and outbound transportation.

With the Supply Chain Network Design Model, transportation costs are assumed linear in transport volumes. Clearly, this is not always the case: there may be minimum charges, fixed costs, or many other types of fixed and variable cost components. However, in order to build the model, a linear approximation must be found. This could be done in several different ways:

- Take average transport cost from historical data
- Use list prices
- Use regression analysis to find the costs
- Use benchmark rates from other sources

Whichever way you use to uncover these costs, you need to be aware of how your linear approximation affects the reliability of the model.

Data collection: Facility Data
The Supply Chain Network Design Model allows facility costs to be both fixed and variable in volume. There will always be people arguing that “all costs are fixed” or “all costs are variable”, but what you need to consider is how fixed and variable cost components affect the solution your model searches for.
Fixed costs will make it expensive to have many facilities, so the model will try to reduce the number of facilities. Variable costs will make it costly to have long distances, and the model will therefore try to increase the number of facilities (or at least reduce average distances).

If facilities are owned and/or operated by a third-party, finding the fixed and variable costs is normally straight-forward – they are given in the contract. If a facility is operated in-house, other techniques have to be used. Among them:

- Activity-based costing to find variable costs
- Regression analysis over volume (note that the intercept is the fixed cost component)

For facilities we also need to understand the capacity. The capacity is the maximum throughput over a specified unit of time (e.g. a week). Note that this can be very difficult to measure in practice, since shifts can be added, while capacity also depends on planning and scheduling.

Network Design Baselines
You should be careful in which baseline you use for comparing your results. Three baselines are important to consider:

- **Baseline 1 – Actual costs**: what cost does the model give us if we use the actual, current flows? We want to know how well the model matches reality. You use this baseline to calibrate the model.

- **Baseline 2 – Adhere to policy**: there may be a policy in place that you are simply not adhering to in your operations. With this baseline you want to know how other solutions compare to what you ought to be doing according to the policy in place.

- **Baseline 3 – Optimal DC assignment**: if you were to use the optimal assignment for the DC – what would the solution look like? With this baseline you can isolate the effect of number of DCs since you optimize allocation.

It is important to keep in mind that you compare design changes to the right baseline. For instance, if you use the model to figure out how much you could reduce costs by reducing the number of DCs, you need to be aware the model will tell you this while, at the same time, optimizing the allocation given the number of DCs. Hence you should compare your solution - the “optimal number of DCs under optimal allocation” - to Baseline 3, where you have the “current number of DCs under optimal allocation”. Why? Because otherwise you compare solutions that have optimal allocations to solutions that do not have optimal allocations – you do not isolate the effect of changing the number of DCs.

Running Scenarios
One of the key benefits of the Supply Chain Network Design Model is that it is easy and fast to run different scenarios. Scenarios can investigate uncertain parameters (sensitivity analysis) or explore how different constraints affect the optimal solution.

While this is a great benefit, it is important not to get “analysis paralysis” – just because it is
possible to run many scenarios does not mean it is the way to go. It is important to understand which scenarios are relevant and, most importantly, how to interpret the results. For instance, which baseline should be used for comparing the results of the scenario?

Advanced Supply Chain Network Design Topics

There are many advanced supply chain network design topics and we introduce several here. The first is robust optimization using simulation along with optimization. This is a relatively simple and quick way to get a handle on the impact of the variability of demand (or other factors) on facility selection. We also cover multi-commodity flow problems, which significantly increases both the complexity and size of the models. While more complicated, multi-commodity flow models are still very similar to the transshipment and facility location models explored previously. The concept of Flexibility was introduced following the approach developed by Jordan and Graves (1995). Forming chains between plants increases the overall flexibility at a much lower cost than if we provided full flexibility. The final expansion of the model covers multiple time periods. This is meant for more tactical planning periods – but again, the models were very similar to the simpler single commodity transshipment models with the addition of inventory balance equations. The final section reviews how pipeline inventory, safety stock, and cycle stock can be included in strategic network design models.

Robustness – demand uncertainty

Supply Chain Network Design (SCND) models are deterministic. They assume that each input value is known with certainty and exhibits no variability. We know this is not the case in reality. So, while there are many more sophisticated mathematical techniques that address this shortcoming, we can use simple Monte-Carlo simulation to try to understand how robust our solutions are.

Essentially, the method involves re-solving the model with new input information each time. The new input data is randomly selected using estimates of the distribution of the variables. The easiest way to simulate random variables in spreadsheets is to use the RAND() function. It returns a number between 0 and 1.00 following a uniform distribution.

- To simulate a uniform distribution with mean of X, plus or minus Y%, we would set the value to:

 \[X \times (1 + (\text{RAND}() - 0.50) \times 2Y) \]

 So that if we wanted 250 +/- 20%, we’d use \(250 \times (1 + (\text{RAND}() - 0.50) \times 0.40)\) returning values from ~200 to 300.

- To simulate a Normal Distribution with a mean of X and a standard deviation of Y, we would use:

 \[\text{NORM.INV} \left(\text{RAND}(), X, Y \right) \]
So for mean of 300 with standard deviation of 45 we’d use $=\text{NORM.INV(RAND(),300,45)}$ returning values $\sim \text{N}(300,45)$.

After each new simulation of input values, the model is run and the results are stored. The analysis of the resulting runs can help determine which facilities, for example, are more likely to stay open under a variety of demand outcomes. This is not an exhaustive method – simply one approach to gauge the robustness of the design.

Multi-commodity flow model

Multi-commodity flow (MCF) models introduce multiple products. Each product will have its own demand, supply and other characteristics. If each product is independent and there are no interactions, then we can simply model each commodity individually. Whenever there is a shared resource (common capacity constraint, for example), then a multi-commodity flow model is needed.

The formulation is shown below. The primary addition to the original formulation is the additional subscript of k for the different commodities for the costs, decision variables, demand, and supply. We added, in this formulation, two types of supply capacity constraints: one that is location-commodity specific and one that is location specific for all commodities there. These are quite common in practice.

\[
\begin{align*}
\text{Min} \quad & z = \sum_i \sum_j \sum_k c_{ijk} x_{ijk} \\
\text{s.t.} \quad & \sum_j x_{ijk} \leq S_{ik} \quad \forall i \in S, k \in K \\
& \sum_j \sum_k x_{ijk} \leq S_i \quad \forall i \in S \\
& \sum_i x_{ijk} \geq D_{jk} \quad \forall j \in D, k \in K \\
& \sum_i x_{ijk} - \sum_i x_{jik} = 0 \quad \forall j \notin D, \notin S, k \in K \\
& \sum_i \sum_k x_{ijk} \leq CAP_j \quad \forall j \notin D, \notin S \\
& x_{ijk} \geq 0 \quad \forall ijk
\end{align*}
\]

Solving the MCF models are the same as the single commodity models – they are simply larger and more difficult to interpret. The multiple layers of constraints make the calculation of individual costs difficult – this is covered in activity based costing and managerial accounting.

Chain approach to flexibility

Supply chain network design (SCND) models do not consider variability of demand. A MILP solution, while optimal, can often be quite fragile. This means, that if any of the input values change, the total costs could change dramatically. We might want to find a SCND that is more flexible in its ability to handle changes in demand – in particular sudden surges or peaks in...
Demand for certain products or commodities.

Full flexibility can be achieved by forcing each plant to manufacture every product. This provides complete demand flexibility as capacity can be diverted from any plant to handle surges of a certain product. This is very expensive, however. The opposite extreme is to create dedicated plants that only manufacture a single product. Dedicated plants are able to leverage economies of scale and tend to increase the level of expertise, however, they also increase risk exposure and limit flexibility to respond to surges. A clever design called chaining allows manufacturing networks to achieve most of the flexibility allowed in fully flexible designs, but at a fraction of the cost.

Multiple time period models

Up to this point, each model assumed a single bucket of time. We have expanded this now to consider multiple time periods. This is more common with tactical time frame (weeks to months) models.

To model multiple time periods, we need to introduce the idea of the inventory level at a location, j, at time t, I_{jt}. This is the quantity available at location j at the end of time t. This allows us to charge an inventory holding charge (h) for each time period.

We also need to include an inventory balance constraint – similar to the conservation of flow constraints in transshipment models. This is the 3rd constraint in the formulation below, which states, the sum of all flow into node j during time t, minus the sum of all flow out of node j during time t, plus the inventory available at node j at the end of time t-1, minus the inventory available at node j at the end of time t is zero.

$$\text{Min} \quad z = \sum_i \sum_j \sum_t c_{ijt} x_{ijt} + \sum_j \sum_t h I_{jt}$$

s.t.

$$\sum_j x_{ijt} \leq S_i \quad \forall i \in S, t \in T$$

$$\sum_j x_{ijt} \geq D_j \quad \forall j \in D, t \in T$$

$$\sum_j x_{ijt} = \sum_j x_{jat} + I_{j,t-1} - I_{j,t} = 0 \quad \forall j \notin S, t \in T$$

$$I_{jt} = I_{j \text{ initial}} \quad \forall j, t = 0$$

$$x_{ijt} \geq 0 \quad \forall i,j,t$$

Inventory considerations

Thus far, inventory has not been considered in the design of the supply chains. Surprisingly, it is very common to ignore inventory considerations when designing a supply chain. This is due to a couple different reasons. First, inventory policies are based on probabilistic models that do not combine well with deterministic MILP optimization models. Second, most of the key determinants of inventory levels (demand variability, lead time, service level, order
size, etc.) are only known tactically not strategically. Finally, inventory balance equations, which would be needed to model inventory costs, cannot be used to track and optimize strategic inventory decisions that are made at yearlong increments.

Instead, we offer an approach that leverages the non-linear empirical relationship between inventory and throughput. It has been found that average inventory for a specified time period is equal to: αT^β where T is the throughput in items or value, and α and β are estimated coefficients. The β parameter is typically between 0.5 and 0.8. One can simply add this quantity to different runs as a post-hoc analysis or incorporate it into the model with binary variables.

Practical Considerations in Supply Chain Network Design

While SCND problems are highly mathematical and depend on optimization, the majority of the problems that occur in practice have nothing to do with the actual models. It is usually a problem with the people involved: the objectives were not agreed upon or clearly stated, the scope kept changing, the wrong problem was solved, etc.

It is important to realize that SCND is just one problem in a larger set of supply chain problems that need to be solved. As shown in the figure below, SCND is a strategic decision that is conducted with multiple year time horizons and has a very high potential impact on Return on Assets or Investment. The transactional and tactical/operational problems are conducted more frequently but have a lower potential impact. All of these lower level solutions should align with the overall supply chain strategy and network design.

![Figure 3. Fitting SCND into the bigger picture](Source: Chainalytics)

Know Thy Project – It is important that you have a solid understanding of not only the physical supply chain (sources, facilities, products, flows, etc.), but also the people involved. You need to know the stakeholders but also the ultimate decision makers. There is an excellent article in the Harvard Business Review called “Who has the D?” that discusses how the decision making process in a firm can be improved. It is important that you know “who has the D” – that is, the ultimate decision – for your project. Scoping meetings with all stakeholders are very critical here to establish the boundaries, objectives, and other rules of the road for a large project like
Focus on the Problem – There is always tremendous pressure in a SCND engagement from the different stakeholders to explore every exception and essentially boil the ocean to explore every possible solution. This is impossible to do in reality. So, you need to know how to separate the important aspects from the trivial using segmentation and data aggregation as much as possible. Identifying the fewest possible number of products to model is critical – be sure to think of supply chain distinctions for products – not just marketing distinctions. Many managers (and your future stakeholders) will not understand that the model is a caricature of the supply chain, not a high-definition photograph! You have a variety of different analysis tools and techniques to address questions of varying importance: from large-scale MILP models to Side Scenario Runs to Quick Heuristic Analysis. Use them appropriately – if everything is equally important, then nothing is important!

Be Experimental – There are two aspects to this suggestion: building the model and using the model. When building the SCND model itself, we recommend using a spiral method (start small, test it, evaluate, adapt it, and repeat) versus the traditional waterfall method (collect all input, develop complete requirements, build the full model, test the complete model, release to users). By creating the model iteratively, you build confidence in it, identify potential outliers, keep stakeholders engaged, and might end up with an early and unexpected solution. When running the model, we recommend you try as many different scenarios and options as possible. This is why you go through the pain of creating these complex models! Running multiple scenarios allows you to: test and cost out competing ideas and strategies, understand internal trade-offs within the network, uncover opportunities for serendipitous discovery, and better communicate with stakeholders.

Separate the Math from the Decision – The final suggestion deals with understanding the virtues of a mathematical model versus humans. Mathematical models are exceptionally good at making trade-offs between accurately quantified options. However, models will NEVER consider all factors and cannot fully represent reality. Humans are needed to determine what aspects are important and to provide the options and input for the model to consider. Also, because optimization models will do anything for a dollar (penny, euro, ruble, peso, or any other currency) the results should be scrutinized. The absolute lowest cost solution is rarely the right business solution. The key point is that mathematical models should be used for Decision Support not for the Decision itself. Executives and managers have additional experience and insights into the larger environment that need to be considered when making large and important decisions, like supply chain network design.

Learning Objectives

- Introduce network models
- Review how formulate the transportation problem and the transshipment problem
- Learn how to formulate the continuous single facility problem
- Formulate and solve network facility location problems (discrete candidate selection)
- Use network flow models to evaluate the number of facilities in a network
- Incorporate Level-Of-Service (LOS) constraints in the network models
- Identify how to combine previous models to a Supply Chain Network Design Model
- Construct relevant baselines for the analysis
- Perform robust optimization using supply network models
- Construct multi-commodity flow models
- Review how to expand the model into several time periods
- Understand when to incorporate inventory costs into the network models
- Gain an appreciation and understanding of practical considerations when conducting SCND engagements

References

Production Planning

Summary
We now review the information flow within a firm, and the coordination and planning of production. What is being coordinated? Well, what we want to achieve is to match the demand of our customers with the supply from our firm, which requires components from our suppliers. For this match to be possible, information about future demand should be used as an input of the master production schedule, which is then used to determine the materials requirements.

Key Concepts

Fixed Planning Horizon

Master Production Schedule (MPS)
The MPS is the basic communication between the market and manufacturing. It is a statement of production – not demand. It is a plan to meet the forecasted demand, not a forecast of demand. There are several manufacturing or production strategies that determine how the MPS can look like:

- **Level production strategy.** This is a strategy aiming at even production levels over time. The major benefit is a smooth and stable operations which reduces switching costs and minimizes the need for outsourcing, overtime, or other flexibility measures. The downside is that it leads to heavy inventory build-up when demand is low, and possible shortage when demand is high.

 \[t = P_t = (\sum F_t - I_0) / n \]

- **Chase demand strategy.** With this strategy the aim is to let production quantities follow demand as closely as possible, so that more is produced in times of high demand and vice versa. The benefit of this is that inventory is kept at a minimum, and so is obsolescence. On the other hand, it tends to lead to large swings in production quantities and labor needs.

 \[t = P_t = F_t \]

- **Hybrid strategy.** A hybrid strategy tries to combine the benefits of the level production strategy and the chase demand strategy, by balancing the costs associated with the strategies. This can be done in several ways. Below we report in more detail how this is handled when there is a fixed planning horizon.
Fixed planning horizon (FPH) problem

The FPH problem considers the problem of finding the lowest cost production plan over a fixed horizon with multiple time periods. Demand is considered deterministic but can vary between periods.

- **Demand**
 - Constant vs Variable
 - Known vs Random
 - Continuous vs Discrete
- **Lead time**
 - Instantaneous
 - Constant or Variable (deterministic/ stochastic)
- **Dependence of items**
 - Independent
 - Correlated
 - Indentured
- **Review Time**
 - Continuous
 - Periodic
- **Number of Echelons**
 - One
 - Multi (>1)
- **Capacity / Resources**
 - Unlimited
 - Limited / Constrained

- **Discounts**
 - None
 - All Units or Incremental
- **Excess Demand**
 - None
 - All orders are backordered
 - Lost orders
 - Substitution
- **Perishability**
 - None
 - Uniform with time
- **Planning Horizon**
 - Single Period
 - Finite Period
 - Infinite
- **Number of Items**
 - One
 - Many
- **Form of Product**
 - Single Stage
 - Multi-Stage

There are several ways to solve the FPH problem:

Simple heuristics. These are simple decision rules, for instance that you run only one production run (One time run heuristic), that you produce in every period exactly what is demanded (lot for lot), or that you produce either a fixed “optimal” quantity or according to fixed “optimal” intervals. These heuristics are simple making decision-making fast, although the results are not necessarily particularly good.

Specialized heuristics. There are several more sophisticated heuristic developed for the FHP, including the Silver-Meal (SM) heuristic, the least unit cost heuristic and the part-period balancing heuristic. In this course we focus on the SM heuristic. This heuristic searches through the periods to find the lowest cost per period. It first tests if it is less costly (per period) to produce next period’s demand in this period. If it is, it sees also if it is less costly to include the period after next period in this period’s production. It continues this process until the cost per period increases. When it does, say in period k, it starts over by considering production in period k, and sees if the cost per period is reduced by including also the demand from k+1 in the production of period k. It continues like this until the end of the horizon. While more
sophisticated, it is not guaranteed to find a very good solution.

Optimal methods. The Wagner-Whitin algorithm provides the optimal solution by relying on dynamic programming. This is an efficient method for large problems. For smaller problems, a spreadsheet MILP model is a quick way to find the optimal solution.

In summary - there are many methods available. Heuristics are fast and easy to implement, but are not always good in the sense that they provide a near-optimal solution. Specialty heuristics are more sophisticated, a bit harder to set up, but tend to provide better “real-world’ results. Optimal methods require more time and data, allow for several constraints and give the optimal solutions. However, keep in mind that the information fed into the model is often not exact.

Approaches for Solving the FPH Problem

Simple Heuristics

One Time Run – Manufacture all in one run for that month

Example:

<table>
<thead>
<tr>
<th>Month</th>
<th>Forecast</th>
<th>Production</th>
<th>IOH</th>
<th>Holding Cost</th>
<th>Set-Up Costs</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200</td>
<td>2000</td>
<td>1800</td>
<td>$1,800</td>
<td>$500</td>
<td>$2,300</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>0</td>
<td>1650</td>
<td>$1,650</td>
<td>-</td>
<td>$1,650</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>0</td>
<td>1550</td>
<td>$1,550</td>
<td>-</td>
<td>$1,550</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>0</td>
<td>1500</td>
<td>$1,500</td>
<td>-</td>
<td>$1,500</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>0</td>
<td>1450</td>
<td>$1,450</td>
<td>-</td>
<td>$1,450</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>0</td>
<td>1350</td>
<td>$1,350</td>
<td>-</td>
<td>$1,350</td>
</tr>
<tr>
<td>7</td>
<td>150</td>
<td>0</td>
<td>1200</td>
<td>$1,200</td>
<td>-</td>
<td>$1,200</td>
</tr>
<tr>
<td>8</td>
<td>200</td>
<td>0</td>
<td>1000</td>
<td>$1,000</td>
<td>-</td>
<td>$1,000</td>
</tr>
<tr>
<td>9</td>
<td>200</td>
<td>0</td>
<td>800</td>
<td>$800</td>
<td>-</td>
<td>$800</td>
</tr>
<tr>
<td>10</td>
<td>250</td>
<td>0</td>
<td>550</td>
<td>$550</td>
<td>-</td>
<td>$550</td>
</tr>
<tr>
<td>11</td>
<td>300</td>
<td>0</td>
<td>250</td>
<td>$250</td>
<td>-</td>
<td>$250</td>
</tr>
<tr>
<td>12</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>2000</td>
<td>200</td>
<td>13100</td>
<td>$13,100</td>
<td>$500</td>
<td>$13,600</td>
</tr>
</tbody>
</table>

Table 1. One time run production plan

Lot for Lot (Chase) – Each month manufacture product forecasted for that month

Example:

<table>
<thead>
<tr>
<th>Month</th>
<th>Forecast</th>
<th>Production</th>
<th>IOH</th>
<th>Holding Cost</th>
<th>Set-Up Costs</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200</td>
<td>200</td>
<td>0</td>
<td>$ -</td>
<td>$500</td>
<td>$500</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>150</td>
<td>0</td>
<td>$ -</td>
<td>$500</td>
<td>$500</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>$ -</td>
<td>$500</td>
<td>$500</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>50</td>
<td>0</td>
<td>$ -</td>
<td>$500</td>
<td>$500</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>50</td>
<td>0</td>
<td>$ -</td>
<td>$500</td>
<td>$500</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>$ -</td>
<td>$500</td>
<td>$500</td>
</tr>
<tr>
<td>7</td>
<td>150</td>
<td>150</td>
<td>0</td>
<td>$ -</td>
<td>$500</td>
<td>$500</td>
</tr>
<tr>
<td>8</td>
<td>200</td>
<td>200</td>
<td>0</td>
<td>$ -</td>
<td>$500</td>
<td>$500</td>
</tr>
<tr>
<td>9</td>
<td>200</td>
<td>200</td>
<td>0</td>
<td>$ -</td>
<td>$500</td>
<td>$500</td>
</tr>
<tr>
<td>10</td>
<td>250</td>
<td>250</td>
<td>0</td>
<td>$ -</td>
<td>$500</td>
<td>$500</td>
</tr>
<tr>
<td>11</td>
<td>300</td>
<td>300</td>
<td>0</td>
<td>$ -</td>
<td>$500</td>
<td>$500</td>
</tr>
<tr>
<td>12</td>
<td>250</td>
<td>250</td>
<td>0</td>
<td>$ -</td>
<td>$500</td>
<td>$500</td>
</tr>
<tr>
<td>Total</td>
<td>2000</td>
<td>2000</td>
<td>0</td>
<td>$-</td>
<td>$-</td>
<td>$6,000</td>
</tr>
</tbody>
</table>

Table 2. Lot for lot production plan
Fixed order quantity (FOQ) – Order Q^*=EOQ if F_r>IOH (Q is Stable, T varies)

Example:

<table>
<thead>
<tr>
<th>Month</th>
<th>Forecast</th>
<th>Production</th>
<th>IOH</th>
<th>Holding Cost</th>
<th>Set-Up Costs</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200</td>
<td>400</td>
<td>200</td>
<td>$200</td>
<td>$500</td>
<td>$700</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>0</td>
<td>50</td>
<td>$50</td>
<td>-</td>
<td>$50</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>400</td>
<td>350</td>
<td>$350</td>
<td>$500</td>
<td>$850</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>0</td>
<td>300</td>
<td>$300</td>
<td>-</td>
<td>$300</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>0</td>
<td>250</td>
<td>$250</td>
<td>-</td>
<td>$250</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>0</td>
<td>150</td>
<td>$150</td>
<td>-</td>
<td>$150</td>
</tr>
<tr>
<td>7</td>
<td>150</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td>-</td>
<td>$0</td>
</tr>
<tr>
<td>8</td>
<td>200</td>
<td>400</td>
<td>200</td>
<td>$200</td>
<td>-</td>
<td>$700</td>
</tr>
<tr>
<td>9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td>-</td>
<td>$0</td>
</tr>
<tr>
<td>10</td>
<td>250</td>
<td>400</td>
<td>150</td>
<td>$150</td>
<td>-</td>
<td>$650</td>
</tr>
<tr>
<td>11</td>
<td>300</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td>-</td>
<td>$0</td>
</tr>
<tr>
<td>12</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td>-</td>
<td>$0</td>
</tr>
<tr>
<td>Total</td>
<td>2000</td>
<td>2000</td>
<td>1900</td>
<td>$1,900</td>
<td>$2,500</td>
<td>$4,400</td>
</tr>
</tbody>
</table>

Table 3. Fixed order quantity production plan

Review of EOQ
The Economic Order Quantity or EOQ is the most influential and widely used inventory model in existence. Essentially, the EOQ is a trade-off between fixed (ordering) and variable (holding) costs. The minimum of the Total Cost equation is the EOQ or Q^*. The Inventory Replenishment Policy becomes “Order Q^* every T^* time periods” which under our assumptions is the same as “Order Q^* when Inventory Position (IP)=0”.

EOQ Model
- Assumptions
 - Demand is uniform and deterministic.
 - Lead time is instantaneous (0) – although this is not restrictive at all since the lead time, L, does not influence the Order Size, Q.
 - Total amount ordered is received.
- Inventory Replenishment Policy
 - Order Q^* units every T^* time periods.
 - Order Q^* units when inventory on hand (IOH) is zero.
- Essentially, the Q^* is the Cycle Stock for each replenishment cycle. It is the expected demand for that amount of time between order deliveries.

Notation
- c_o: Ordering Costs ($/order)
- c_e: Excess holding Costs ($/unit/time)
- D: Demand (units/time)
- Q^*: Optimal Order Quantity under EOQ (units/order)
- T: Order Cycle Time (time/order)
- T^*: Optimal Time between Replenishments (time/order)
Optimal Order Quantity (Q^*)
Recall that this is the first order condition of the TRC equation – where it is a global minimum.

$$Q^* = \sqrt{\frac{2c_t D}{c_e}}$$

Optimal Time between Replenishments
Recall that $T^* = \frac{Q^*}{D}$. That is, the time between orders is the optimal order size divided by the annual demand. Similarly, the number of replenishments per year is simply $N^* = \frac{1}{T^*} = \frac{D}{Q^*}$. Plugging in the actual Q^* gives you the formula below.

$$T^* = \sqrt{\frac{2c_t}{Dc_e}}$$

Periodic Order Quantity (POQ) – order sum of forecasts every $\sim T^$ periods (T is stable, Q varies)*

Example:

<table>
<thead>
<tr>
<th>Month</th>
<th>Forecast</th>
<th>Production</th>
<th>IOH</th>
<th>Holding Cost</th>
<th>Set-Up Costs</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200</td>
<td>450</td>
<td>250</td>
<td>$250</td>
<td>$500</td>
<td>$750</td>
</tr>
<tr>
<td>3</td>
<td>150</td>
<td>0</td>
<td>100</td>
<td>$100</td>
<td>-</td>
<td>$100</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>200</td>
<td>150</td>
<td>$150</td>
<td>$500</td>
<td>$650</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>0</td>
<td>100</td>
<td>$100</td>
<td>-</td>
<td>$100</td>
</tr>
<tr>
<td>7</td>
<td>150</td>
<td>200</td>
<td>400</td>
<td>$400</td>
<td>-</td>
<td>$900</td>
</tr>
<tr>
<td>10</td>
<td>250</td>
<td>800</td>
<td>550</td>
<td>$550</td>
<td>$1,050</td>
<td>$1,600</td>
</tr>
<tr>
<td>11</td>
<td>300</td>
<td>0</td>
<td>250</td>
<td>$250</td>
<td>-</td>
<td>$250</td>
</tr>
<tr>
<td>12</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td>$0</td>
<td>-</td>
<td>$0</td>
</tr>
<tr>
<td>Total</td>
<td>2000</td>
<td>2000</td>
<td>2000</td>
<td>$2,000</td>
<td>$2,000</td>
<td>$4,000</td>
</tr>
</tbody>
</table>

Table 4. Periodic order quantity production plan

Optimal method
The FPH can be set up as a MILP problem, similar to the problems discussed previously. With a MILP formulation, the objective is to minimize the total costs, which consist of setup costs for every production run/batch and holding costs from finished goods inventory. Index denotes time period.

We let Z_t be a binary decision variable indicating production in period t, and Q_t be the decision variable determining production quantity in period t. We thus have that:
where \(c_{\text{setup}} \) is the setup cost, \(h \) is the holding cost per unit and time period, \(I_t \) is inventory level at the end of period \(t \), \(D_t \) is the (forecasted) demand in period \(t \), \(M \) is a large number, and \(\text{CAP}_t \) is the production capacity in period \(t \).

In the above formulation, the initial inventory is zero. As before, we have a conservation of flow constraint as well as a linking constraint. The conservation of flow states that the difference in inventory between the end and the start of the period must be equal to the difference between demand and production quantity in that period. The linking constraint forces \(Q \) to be zero if \(Z \) is zero in the same period.

Material and Distribution Requirements Planning

Available to Promise (ATP)

The portion of existing inventory and/or planned production that is not committed or consumed is considered to be Available to Promise. This means that these units can still be sold to customers.

There are two slightly different ways to calculate this:

- **Discrete** – meaning that each production cycle is planning independently. Inventory from one production run is not carried over to the next run.
- **Cumulative** – meaning that inventory is carried over between periods. That is, inventory from the first production run which is unsold at the start of the second production run can still be sold during and after the second production run.

Time Fencing is often used to stabilize production planning (demand and planning)

- if \(t < \text{Demand Fence} \) then use only committed orders for MPS
- if \(\text{Demand Fence} < t < \text{Planning Fence} \) then limited MPS overrides
- if \(t > \text{Planning Fence} \) then all MPS changes allowed (within limits)
Materials Requirements Planning (MRP)

Material Requirements Planning (MRP) systems ensure that all components and parts required for an end item are on hand when needed. These systems are intended to answer questions about what should be ordered or manufactured, how much, and when. These questions are answered by feeding the MRP with the MPS, inventory records, and the Bill of Materials (see below).

- **Benefits of MRP**
 - Leads to lower inventory levels
 - Fewer stock outs
 - Less expediting
 - Fewer production disruptions

- **Limitations of MRP**
 - Scheduling, not a stockage, algorithm
 - Does not address how to determine lot size
 - Does not inherently deal with uncertainty
 - Assumes constant, known lead times
 - Does not provide incentives for improvement

Bill of Materials (BOM)

The Bill of materials (BOM) shows which parts, subassemblies, and components that make up a given product to be produced. For illustrative purposes, the BOM can be shown as a tree-diagram, with the completed product at the top, and all parts and components being the roots. One example for a bicycle is shown below:

![Figure 4. Bill of materials](image)

MRP coordination

There are different ways to coordinate the MRP between a firm and its (independent) suppliers. In this lesson we went through three different approaches:

- **Simple MRP rules.** This means using simple rules also for coordination with the supplier. For instance, if there is a lead time of x weeks to get a component from the supplier,
order release is scheduled x weeks before the units are needed for the assembly at the firm. The supplier uses this as the demand input for its own production planning.

- **Sequential optimization.** With this approach, the firm optimizes its production first, and then feeds the requirements to the supplier who optimizes its production.
- **Simultaneous optimization.** With this approach, the firm and the supplier’s production are optimized simultaneously. This means that firm’s or the suppliers’ costs may increase, while total costs will decrease.

Distribution Requirements Planning (DRP)

DRP can be thought of as the application of the MRP principles to distribution inventories. It is used for inventory control in a distribution environment with many products, many stockage locations, and multiple echelons. In practice, it is an algorithm for scheduling and stocking, however, it does not determine lot size or safety stock.

Learning Objectives

- Identify how coordinate the internal information flow of a firm
- Learn how to use demand information to create the master production schedule (MPS)
- How to solve the fixed planning horizon problem (FPH) using several different algorithms
- Determine available to promise (ATP)
- Understand how material requirements planning (MRP) and distribution requirements planning (DRP) work
- Understand the bill of materials (BOM)
- Understand benefits and limitations of MRP and DRP

References

Connecting Sales to Operations

Summary
We review how the Sales & Operations Planning (S&OP) process within a firm can be used to find the right balance between operational capacity and demand. The aggregate planning model allows a firm to set various operational and sales levers in order to determine the best trade-offs to make to maximize profitability. The primary levers on the operational side are: workforce, outsourced production, inventory, internal production levels, backlogs, and overtime hours. There might be more levers for specific situations, of course. On the demand side, we discussed how sales changes and promotions can be used to shape demand and how the aggregate planning model can help determine the operational impact. The optimization model can also be used to test out different strategies and potential policies.

Key Concepts

Aggregate Planning Model
The aggregate planning model is used to plan for the mid-term 3-18 month time frame. It takes as input the proposed demand as well as starting inventory, workforce, and costs for different options. The longer horizon planning involves more strategic decisions – such as network design etc. – while the closer time frame is planned using the Master Production Schedule. The planning unit for the aggregate planning model is typically not the individual SKU, but rather a family or related SKUs or general flow unit – such as tons, or composite units.

The model is used to find the best mix of Production, Inventory, Workforce, Outsourcing, and Capacity Levels in order to maximize the firm’s profit over the 3-18 month planning horizon given the forecasted demand over the planning horizon by changing:

- Production Rate – how much to produce each month
- Workforce – how many employees to hire or lay off each month
- Overtime – how many overtime hours to plan for each month
- Machine capacity – how much capacity should be allocated to production lines each month
- Outsourcing – how many items to produce using contract or outsourced manufacturing each month
- Backlog – how many units each month should we allow to be backlogged
- Inventory on hand – how much inventory should we plan on holding each month
- Pricing – how should the product pricing be changed (promotions, discounts, etc.) each month
The output of the aggregate planning model is essentially the production (and pricing) plan. Two basic strategies that can be implemented are: Chase and Level. The chase strategy implies that production is made as close to the point of demand as possible. This leads to low inventory costs but generally higher production (overtime, workforce, outsourcing) costs needed to adjust the production to meet demand peaks. The level strategy attempts to keep the production level for the entire time period and let the inventory build up to cover any demand peaks. The hybrid strategy that combines these two extreme solutions is generally used.

Mathematical Formulation

\[
\begin{align*}
\text{Min} & \quad z = \left(c_w W_t + c_h H_t + c_f F_t + c_o O_t + c_l l_t + c_b B_t + c_m P_t + c_c C_t \right) \\
\text{s.t.} & \quad P_t - HW_t + Ot = 0 \quad t T \\
& \quad W_t = W_{t-1} + H_t + F_t = 0 \quad t T \\
& \quad I_t = I_{t-1} + P_t - C_t + D_t + B_{t-1} \quad B_t = 0 \quad t T \\
& \quad O_t - MW_t \leq 0 \quad t T \\
& \quad W_t, H_t, F_t, O_t, I_t, B_t, P_t, C_t \geq 0 \quad t T
\end{align*}
\]

Decision variables

\[H_t = \text{Number of employees to hire at start of month } t \quad t\]
\[F_t = \text{Number of employees to fire at start of month } t \quad t\]
\[W_t = \text{Number of employees in month } t \quad t\]
\[I_t = \text{Number of units of inventory on hand in month } t \quad t\]
\[O_t = \text{Number of overtime hours to work in month } t \quad t\]
\[B_t = \text{Number of units to put on backorder in month } t \quad t\]
\[P_t = \text{Number of units to manufacture internally in month } t \quad t\]
\[C_t = \text{Number of units to outsource to contract mafg in month } t \quad t\]
Input Data:
\[W_0 = \text{Size of workforce at start of planning period (month 0)} \]
\[W_T = \text{Size of workforce at end of planning period (month T)} \]
\[I_0 = \text{Amount of inventory at start of planning period (month 0)} \]
\[I_T = \text{Amount of inventory at end of planning period (month T)} \]
\[B_0 = \text{Amount of backlog at start of planning period (month 0)} \]
\[B_T = \text{Amount of backlog at end of planning period (month T)} \]
\[D_t = \text{Demand in month } t \text{ (units)} \forall t \]
\[c_M = \text{Cost of raw material per } ($)\text{/unit} \]
\[c_I = \text{Cost of holding inventory } ($)\text{/unit/month} \]
\[c_B = \text{Cost of a backorder } ($)\text{/unit/month} \]
\[c_F = \text{Cost of firing one employee } ($)\text{/person} \]
\[c_H = \text{Cost of hiring one employee } ($)\text{/person} \]
\[c_W = \text{Cost of employee } ($)\text{/person/month} \]
\[c_O = \text{Cost of overtime } ($)\text{/hour} \]
\[c_C = \text{Cost of outsourcing to a contract manufacturer } ($)\text{/unit} \]
\[L = \text{Number of hours required to make each item } (\text{hours/unit}) \]
\[H = \text{Number of hours each employee can work per month } (\text{hours/person}) \]
\[M = \text{Maximum hours of overtime allowed per employee per month } (\text{hours/person}) \]

Aggregate Planning Model Levers
The aggregate planning model is mainly used to determine the best mix or both operational and sales based strategies. The operational levers control the supply while the sales levers influence the demand. On the operational side, we can manage supply by controlling inventory (common components and pre-build Inventory) and/or capacity (workforce flexibility, seasonal workforce, outsourcing production, or product flexibility).

Managing demand is a little less direct. The objectives on the demand side are to (1) Grow market, (2) Steal market share from competitors, or (3) Shift buying patterns of the customers. The levers available are:
- Pricing – incentives (discounts, MOQ’s, etc.),
- Advertising – increasing brand awareness, and
- Promotions – price reduction over short period of time.

Demand Elasticity
The concept of demand elasticity with respect to price is useful in determining how a change in price will impact the demand.
Recall that the elasticity will almost always be negative. That is, a negative change in price (a discount) will lead to higher demand. The elasticity of demand for many goods can range from -0.01 to as high as -10 or more. The way to interpret an elasticity of, say, -2.5 is that for every 1% change in price, the demand will increase by 2.5%.

Monthly Sales & Operations Planning Process

There are many flavors of S&OP out there. Most feature a set of structured meetings where specific tasks are performed by different functions within the firm and eventually are presented with recommendations to senior leadership to make a final decision. We described a five-step process as follows:

Step 1: Data Gathering – the core data on the most recent month’s demand, inventory, production levels, sales, etc. is gathered, cleaned, and made ready to distribute. This should be accomplished in the first few days of a new month.

Step 2: Demand Planning – The demand planning team from the sales/marketing organization develops the initial set of forecasts. These include their expert opinions or modifications to any numeric forecasts that were made.

Step 3: Supply Planning – The supply planning/operations team receives the initial forecast and the most recent set of data and develop a resource plan to meet the proposed demand forecast. Any conflicts or restrictions are noted.

Step 4: Pre-Meeting – The supply and demand plans are brought together and compared. This larger group makes suggestions and recommendations. Any conflicts that cannot be solved at this level are identified.

Step 5: Executive Meeting – The senior team makes decisions on any outstanding conflicts – they have a go no go decision authority.
Distribution and Channel Strategies

In this lesson we cover distribution and channel strategies. A distribution channel is the path by which all goods and services travel from the original vendor to the end consumer and the pathway that payments make from the end consumer to the original vendor. We dive deeper into this topic by exploring e-commerce and omni-channel strategies and omni-channel network design. We conclude with a discussion of reverse logistics and reverse logistics network design.

There are four types of players in distribution channels that include manufacturer, wholesaler/distributor, retailer, and consumer:
- Manufacturer: Makes products
- Wholesaler/Distributor: Traditional middleman. Purchases products in large quantities, consolidates, assembles, and resells to retailers and others.
- Retailer: Sells good directly to the consumer
- Consumer: Person who buys the product

The different types of distribution channels include wholesaler channel, direct to retailer, and direct to consumer (see figure below).

Distribution Channel Strategies
To address the different distribution channel types, there are various strategies that address needs of the business and the actors present in the channel to ensure an efficient flow. Types of strategies include the traditional multi-tiered, mixing/consolidation center, distributor/wholesaler, direct to store delivery, and drop shipping from manufacturer (see figure below).

We further articulate these strategies below by describing the product flow and the pros/cons of each.
Figure 6. Distribution design options

Traditional Multi-Tiered Distribution

Product Flow
- Retailer places orders to each manufacturer
- Product flows from manufacturer to retailer DCs
- Retailer DCs receive product from multiple vendors
- DCs send full truckloads of mixed goods to stores, and
- Consumers/customers view, select, receive, and pay for goods at store

Pros/Cons
- Flow leverages retailer economies of scale but with lots of handling
- On the inbound, DCs need to be able to justify full loads from vendors
- On the outbound, DCs are able to mix product from multiple sources
- High level of inventory stored at retail locations
- Lower transportation costs due to economies of scale
- Good for fast moving items
- Shorter transit times from vendors to stores

Mixing Centers / Hubs

Product Flow
- Retailer places orders to each manufacturer
- Product flows from manufacturer to Mixing Center
- No (or very little) inventory is held at the Mixing Centers – In-transit Merge
- Retailer DCs receive full truckloads of goods from multiple manufacturers from the Mixing Center
- DCs send full truckloads of mixed goods to stores, and
- Consumers/customers view, select, receive, and pay for goods at store

Pros/Cons
- Flow leverages retailer economies of scale with lots of handling
- On both inbound and outbound, DCs are able to mix product from multiple sources
- High level of inventory stored at retail locations
- Lower transportation costs due to economies of scale
- Good for slower moving items
- Longer transit times from vendors to stores

Distributors

Product Flow
- Retailer places orders to distributor
- Product flows from manufacturer to distributor
- Inventory is held by the distributor
- Retailer DCs receive full truckloads of goods from multiple manufacturers from the distributor
- DCs send full truckloads of mixed goods to stores, and
- Consumers/customers view, select, receive, and pay for goods at store

Pros/Cons
- Flow leverages the distributor’s economics with lots of handling
- On both inbound and outbound, DCs are able to mix product from multiple vendors
- High level of inventory stored at retail locations
- Lower transportation costs due to economies of scale
- Good for much slower moving items
- Much longer transit times from vendors to stores
- Higher cost due to third party involvement

Direct to Store Delivery

Product Flow
- Retailer places orders to each manufacturer
- Product flows from manufacturer directly to the retail stores bypassing the DCs
- Vendor often merchandises, orders, and manages the retailer’s shelf
- Consumers/customers view, select, receive, and pay for goods at store

Pros/Cons
- Flow leverages the vendor’s economics
- Bypassing the retail DC reduces congestion
- Vendor can take over ordering, merchandising, etc.
- Can lead to congestion and added costs at the retail stores
- Loss of control of product flow and availability by the retailer
- Used for selected items (beverages, newspapers, snack foods)

Drop Ship to Customer

Product Flow
- Consumer orders from retailer
- Retailer passes order to manufacturer
- Manufacturer sends product directly to consumer
- Manufacturer and retailer could be same firm
Pros/Cons

- Very slow response time to consumer
- Very strong product availability while keeping inventory levels low
- Bypassing retailer DC and store reduces congestion
- Transportation cost can be high – small shipment size to consumer
- Allows for high level of customization
- Consumer places order – triggers pull operation

The distribution channel strategies are not mutually exclusive. Most firms use multiple channels for products. Selection of the strategy is based on several needs including: velocity (demand) of the product; desired response time to consumers; physical and other characteristics of products, supplier, and customers; and value of products.

Omni-Channel Distribution

From around 1995 to 2000 at its earliest stage, e-commerce was largely made up of “pure players”. These made up of firms that allowed customers to buy goods and services over the internet using a website (eBay or Amazon). These firms also did not have a physical presence. This began early discussions that maybe traditional stores might be unnecessary in the future. Around 2000 – 2010, multi-channel became the next wave. In this case, firms use multiple online and traditional distribution channels. In most cases, traditional and online channel operations were kept separate and distinct; referred to as “Bricks and Clicks”. This caused inefficiencies in traditional distribution channel strategies.

With the release of the smartphone around 2007 and consumer ability to use the internet on the phone, e-commerce grew at a faster rate than ever before, and with that a desire for ease of access across online and brick and mortar purchase and returns. As of 2010 on, the new path forward for many firms has been Omni-Channel. This is multi-channel retailing strategy where firms provide a seamless retailing experience through all available shopping channels (online & offline). Operations are mixed between challenges and consumers have multiple options for researching, ordering, receiving, paying, and/or returning products.

Retail Perspective:

Where to prepare the orders?

- Distribution Center vs. Fulfillment Center vs. Store
- Trading off distance vs. efficiency vs. effectiveness
- Changes in packaging requirements and usability
- Adapting workforce, facilities, and systems to new tasks
- Maintaining inventory visibility across the channels and facilities

Where and how does the order meet the customer?

- Stores vs. Home vs. Third party locations (work, lockers, gas station)
- Attended vs. Unattended Delivery
- Own fleet vs. Parcel vs. Crowdsourcing vs. Mobile lockers
How to handle returns?
- Product returns ~30% for online vs. 8% for traditional
- At location of purchase vs. Drop points vs. Everywhere
- Allowable reasons: Damaged, Wrong size/color/style, etc.

Omni-Channel Network Design
An omni-channel retailing experience requires flexible delivery networks. Omni, means in “all places”, “all ways”, “without limits”. Omni-channel strategies affect ordering, fulfillment and returns. An Omni-Channel Network Design model formulation is illustrated in the figure below.

![Figure 7. Omni-Channel network design model](image)

Material adapted from Ponce, E. (2017)
Reverse Supply Chains (Reverse Logistics)
Reverse supply chain is all operations related to the reuse of products and materials. It involves collecting items at their “end of life” for capturing value or proper disposal. Reverse supply chains are most effective for reusable items.

Reusable items: Durable products intended to be used multiple times by different users in different locations of a supply chain network.

Reverse supply chains are becoming an increasing focus for consumers and companies alike because:

Increasing amount of waste generated:
- Over 300,000 cell phones disposed daily in United States
- Each EU citizen produces 17-20 kg of technological waste per year

Many modern products containing hazardous materials:
- Electronic devices contain lead, cadmium, mercury, etc.

Many products have shrinking product life cycles:
- Lifecycle of cell phones is 18 months, laptops 24 months, etc.

There are emerging regulations:
- In some regions, producers are responsible for the environmentally safe disposal of products. Extended Producer Responsibility (EPR)
- End of life waste framework directives in the EU for batteries, vehicles, tires, etc.

Product Recovery Options
There are different types of product recover options. The figure below builds out the traditional supply chain with recovery options at each phase of the supply chain.

Figure 8. Product recovery options
There are different forms of reverse supply chains based on condition of the material:

Direct Reuse or Resale: This includes both Reusable Articles (containers, totes, pallets, books, etc.) and normal (non-reusable) products.
- **Reusable Articles** are inspected and, if needed, sterilized/cleaned/prepared for redeployment within firm or across network.
- **Non-reusable Products** are inspected and deemed ready for re-use or resale to other customers without any repair or refurbishing (e.g. wrong size/color/style apparel)

Repair: Used products returned to working order. Typically involves fixing and/or replacing broken parts (e.g. computers, phones, electronic devices).

Refurbish: Used products brought up to specified quality level. Critical modules are inspected and fixed or replaced. Sometimes includes technology upgrading (e.g. aircraft).

Remanufacture: Used products brought up to quality standards as rigorous as new products. Complete disassembly, inspection, and part/module replacement as needed (e.g. automotive engines).

Cannibalization: The returned product is used to recover a limited set of reusable parts and components for use in other products. Only a small proportion of the used product is typically reused. The remaining parts are recycled or disposed of (e.g. integrated circuits from computers).

Recycling: Materials from used products and components are processed and can be reused in

Figure 9. Reverse flow recovery options
production of original or other parts (e.g. metals, paper and cardboards, plastics, etc.).

Differences Between Forward and Reverse Logistics

The following figure illustrates the differences between forward and reverse logistics. It illustrates that reverse logistics can be considerably changed due to inconsistency, non-uniformity, and uncertainty embedded in reverse supply chains.

<table>
<thead>
<tr>
<th></th>
<th>Forward Logistics</th>
<th>Reverse Logistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forecasting</td>
<td>Hard, but relatively straightforward</td>
<td>More difficult due to uncertainty of end of life</td>
</tr>
<tr>
<td>Transportation</td>
<td>One to many</td>
<td>Many to one</td>
</tr>
<tr>
<td>Product Quality</td>
<td>Uniform</td>
<td>Not uniform</td>
</tr>
<tr>
<td>Product Packaging</td>
<td>Uniform</td>
<td>Not uniform</td>
</tr>
<tr>
<td>Destination/Routing</td>
<td>Clear</td>
<td>Unclear</td>
</tr>
<tr>
<td>Pricing</td>
<td>Relatively uniform</td>
<td>Dependent on many factors</td>
</tr>
<tr>
<td>Delivery speed</td>
<td>Importance recognized</td>
<td>Often not considering a priority</td>
</tr>
<tr>
<td>Distribution costs</td>
<td>Accounting systems</td>
<td>Less directly visible</td>
</tr>
<tr>
<td>Inventory Management</td>
<td>Consistent</td>
<td>Not consistent</td>
</tr>
<tr>
<td>Real-time information</td>
<td>Available</td>
<td>Less transparent</td>
</tr>
</tbody>
</table>

Figure 10. Differences between forward and reverse logistics

Network Design for Reverse Logistics

The following network design example illustrates a MILP for reverse logistics.
Learning Objectives

- Understand the fundamental concepts of Sales & Operations Planning in balancing supply and demand
- Formulate and solve an aggregate planning model
- Understand trade-offs and levers available for making aggregate planning decisions
- Appreciation for the trade-offs that can be made between sales and operations in terms of supply versus demand and volume versus product mix
- Understand what distributions channels are and who the players are
- Review flow paths for products that are a function of suppliers, customer and product
- Introduction to Omni-Channel and how it is impacting the supply chain
- Understand the important of reverse logistics
- Recognize the variety of recovery options
- Review network design for reverse logistics

Figure 12. Battery recycling mathematical formulation
References

Supply Chain Sourcing

Summary
Sourcing is an important part of a successful supply chain; it often helps a business maintain a competitive edge. Effective sourcing keeps the costs down, while providing quality goods and services on time and efficiently. Sourcing is driven largely by the relationship between the buyer and supplier. We review some of the main components of supply chain sourcing.

Procurement Strategy
To further our discussion on Supply Chain Sourcing, we review the basics of procurement and sourcing - which are the processes for buying the materials and services needed for the company to conduct its business.

The Price Iceberg
While many purchasers focus on the price of a component or raw material, this is only part of the total cost of the purchase. This is illustrated by the “price iceberg” – while we tend to only see the price paid upfront, there are many aspects that determine the total cost to our business of making the purchase.

![Figure 13. The price iceberg](image)

Value and Risk Mapping
One way to differentiate the purchasing portfolio is by considering where an item falls along two dimensions: 1) the supply risk and, 2) the annual spend (or profit impact on business). Based on this, a two-by-two matrix can be created to describe all items:
For each quadrant, different types of procurement strategies are suitable.

The Sourcing Process
On a general level, the sourcing process consist of the following steps:

- **Internal assessment.** This is to confirm category definition, validate baseline information and understand the key constituents. That is, focus is on the own business.
- **Market assessment.** This is to analyze market dynamics and identify which potential suppliers that may be of interest. It also includes understanding what competitors do.
- **Collect supplier information.** In this step information is collected to understand which criteria to use in the process as well as to understand current spend.
- **Sourcing strategy.** After the initial assessments, the sourcing strategy is developed. This specifies the approach, the specifications, and how to approach the subsequent steps.
- **Bidding process.** In the bidding process, request for proposals (RFPs) are developed and
sent out. The buying firm decides on a bidding format and short-list suppliers.

- **Negotiate, select.** After the bidding process is over, the buying firm negotiates with selected short-listed suppliers. This step ends with a selection.

- **Contract Implement.** This involves developing category implementation plan, communications plan as well as measurements and audit plans.

There is also a feedback loop, consisting of

- Measure and report
- Capture lessons
- Ensure compliance

Value-Based Sourcing

Value based sourcing is the name given to the practice of going beyond the purchase price in a procurement event. For instance, instead of focusing on price, focus is on value; instead of focusing on total cost of ownership, focus is on total contribution.

Handling Volatility

Financial Hedging

There are primarily three ways to hedge financially when buying materials with high price volatility:

- **Simple hedge:** Negotiate long term, fixed price contract in the company’s preferred currency

- **Forward contract:** buy/sell the commodity or a related one for future delivery on a given date at a given price

- **Option:** a call/put option is the right to buy/sell at a certain price at a certain future date

Physical Hedging

Apart from financial hedging, a firm can use physical hedging to handle volatility. Create conditions in which the fluctuations are mitigated “naturally.” (used mainly for currency hedging)

Examples:

- Build a plant in countries where labor rates and currency are not expected to appreciate
- Manufacture and sell in the same country
- Actually buy a commodity when the price is low

Capital Goods

Sourcing of capital goods goes beyond standard purchasing in several ways. First, one must focus much more on the total life cycle of the good. One must also more explicitly consider the expected value of the good at the end of its useful life. Further, aspects such as training, trials, and subsidies may have a large impact on the total cost of the good. The lifetime cost of capital items are summarized in the figure below.
Outsourcing

There are several reasons why firms outsource. These include:

- External supplier has better capability
- External supplier has greater or more appropriate capacity
- Freeing resources for other purposes
- Reduction in operating costs
- Infusion of cash by selling asset to provider
- Reducing or spreading risk
- Lack of internal resource
- Desire to focus more tightly on core business
- Economies of scale of supplier

When outsourcing, the contract is extremely important. A well-written contract makes sure to not just have clear decisions about how to handle disputes and how to measure and reward, but also how to handle intellectual property, how to define the service to be performed, and how to handle the evolution of the relationship. Outsourcing is subject to considerable risk. Some of the key risks are:

- Creating a competitor
- Losing control of the channel to a supplier
- Losing control of the channel to a customer
Purchasing Social Responsibility

Corporate social responsibility (CSR) has a wide range of underlying objectives. These include philanthropy, brand image, human resources attraction, mission support, social business and profitable business. Based on these, companies work in different ways, including using extensive codes of conduct, audit suppliers, train suppliers or work hard to ensure supply chain transparency.

Independently of activity, there is a hierarchy for the different responsibilities within CSR. The top responsibility for all firms is the economic responsibility – a firm cannot survive in the long run if it does not meet this responsibility. After the economic responsibility follows, in the following order: Legal responsibilities, ethical responsibilities, and discretionary responsibilities.

Procurement Optimization

In a way, each procurement is an optimization process in the sense that the procurement department of the company tries to get the best set of suppliers to serve you.

Item-supplier (lane-carrier) specific constraints

Item-supplier specific constraints are constraints that apply to one of the products at one of the suppliers. For instance, when procuring transport services for a number of lanes in a network, each carrier may have capacity restrictions for a given lane. In the MILP-formulation of the problem, these constraints are easily implemented as a separate matrix.

Optimizing with service attributes

Service attributes are often associated with an individual item at a given supplier. For instance, “on time delivery performance” may vary between different suppliers for a given item as well as between different items from the same supplier.

There are many types of service attributes that may be important evaluation criteria in the procurement process. These can be incorporated into the MILP-problem, either as constraints or by attaching a dollar value to the service level. For instance, if a certain service measure is believed to represent $10 per % of service, a LOS-adjusted cost can be minimized.

System attributes/constraints

System attributes are not tied to a specific item. Such constraints are usually concerned with constraints on the suppliers as a group. These are not as straightforward to implement in the MILP-formulation as the item-supplier specific constraints. One has to investigate each case individually and may need to introduce binary variables for different suppliers and/or items. Implementing certain system constraints in the model is also useful for making sensitivity analyses. For instance, it enables an analysis of how reducing the supplier base would affect total cost.

Economies of scope

In many cases the bid one receives for an item depends on whether or not the supplier believes
it will be supplying another item. For instance, when buying transport services, a supplier may be willing to offer a lower price for a lane if he also gets the return transport on the lane. Similar economies of scope may appear in all procurement situations.

Combinatorial auctions
Combinatorial auctions is a way to capture the potential economies of scope. In essence, the idea is to let all suppliers bid for all possible combinations of related products.

Learning Objectives
- Review how to map items based on risk and spend
- Differentiate procurement strategy based on the mapping
- Understand the structured sourcing process
- Review capital goods purchasing
- Highlight importance of CSR in procurement
- Introduce procurement optimization when one evaluates bids for many items from several potential suppliers
- Identify how to take service criteria and systems attributes into account
- Introduce combinatorial auctions in presence of economies of scope

References
Supply Chain Finance

Summary
This review covers some of the most important concepts of accounting and finance from a supply chain manager’s perspective including a short discussion of the role of accounting, the choices and accountant can make, the role and difficulties of depreciation, and an overview of basic accounting concepts.

Key Concepts

Accounting Fundamentals

The Income Statement
The Income Statement provides a summary of the flows in (revenue) and out (expenses) of the firm over a period of time; the net difference between the revenue and expense being the profit or loss of the firm. Put in another way, the income statement describes how the assets and liabilities are used during a particular period. You could also think of it as the sum of income-generating transactions, financial transactions over a stated period of time.

The three main components are:
- Revenues (turnover, sales, proceeds, ‘top line’) – the incoming flow
- Expenses (costs) – the outgoing flow
- Profit (income, earnings, ‘bottom line’) – the difference between incoming and outgoing flow

For a supply chain manager, there are several components to Expenses to be aware of:
- **COGS** (Cost of Goods Sold, Cost of products sold) – these are the direct costs of producing the goods/services that are sold to generate revenues.
- **Cost of Revenue** (cost of sales) – similar to COGS, but includes also costs outside of production, e.g. marketing expenses
- **Depreciation** – these are non-cash expenses associated with the use of capital equipment (for more about this, see below). Related is amortization – this a reduction in goodwill (goodwill is an intangible asset that arises when the firm acquires another firm at a price higher than the book value of the acquired firm)
- **SG&A** (Sales, General, and Administration) – overhead costs associated with generating revenue, including the sales force
- **Operating Expenses** – the sum of COGS, Depreciation, and SG&A.

The Balance Sheet

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The Balance Sheet presents the financial condition of the firm at one point in time. It lists the assets, which is something that is owned by the firm and has measured value. It also lists the liabilities, which are claims against the assets by other parties. You could also think of these as debts or obligations that the firm has to pay other people. The Balance Sheet gives a snapshot of the assets and obligations of the firm at a single moment in time. Assets always equal liabilities. Remember, the balance sheet report Book value, not Market value. These could be equal, but as we will see in the next lesson they may not be.

- **Assets.** You want to separate Current Assets from Long Term Assets. Current assets can be used on short-term to pay for obligations (e.g. cash, account receivables, inventories), whereas long-term assets are, as the name implies, long term (e.g. facilities, equipment – sometimes abbreviated PPE for Property, Plant and Equipment)
- **Liabilities.** Normally liabilities are divided into Current Liabilities, Long-term Liabilities (Debt), and Equity. Current liabilities generally have to be paid in the next accounting period and include, e.g., accounts payables. Long-term liabilities include e.g. loans, bonds, or mortgages. Equity is the capital that owners have put into the firm.

The Role of Accounting

The role of accounting is to record the transactions of a business. The accountant classifies the sources and use of funds. There are primarily three types of reports prepared:

- Financial reports. These are intended for the firm’s investors, includes the income statement and the balance sheet.
- Tax accounting reports. These are provided for the government, in the US for the IRS.
- Product costing reports. These are used for management decision making.

There are certain choices that can be made, as long as the account follow generally accepted accounting practice.

Note that the financial reports provided to investors can differ from the tax reports. They serve different purposes. Financial accounting’s objective is to present fairly the results of operations and the financial condition of the company to its stockholders, whereas corporate tax accounting’s objective is to minimize current tax liability and defer payment of liability as long as possible. This means that the tax code allows companies to deviate from financial accounting in specific areas when calculating taxable income without having to change the corporate financial reports issued to stockholders.

Depreciation

Depreciation is a non-cash expense to the business. It can be thought of as the estimated cost of using an asset. For instance, if a machine is purchased to be used in a manufacturing setting, the depreciation of the machine represents the reduction in the value of the machine over the accounting period. This means that while depreciation is an expense, the value of the corresponding asset reduces by the same amount. So if the depreciation of a machine is $10,000 in a year, this will impact the income statement ($10,000 expense) as well as the
balance sheet (-$10,000 in long-term assets).

There are different ways to construct the rate of depreciation. Most common is straight-line depreciation, where the asset is reduced with the same value each accounting period until it reaches its residual value (its scrap value).

Since depreciation is an expense it will affect the taxable income of the firm. This will affect cash-flows, even though the depreciation itself is non-cash expense.

Basic Accounting Concepts

- **Dual Aspect Concept** - assets always equal liabilities
- **Accounting Period Concept** – Income Statement over a period of time
- **Conservatism Concept** - Choose recording method that results in the lowest asset or highest liability figures
- **Accrual Concept** – record revenues when they are earned (e.g. when the product ships) and record expenses when they are incurred.
- **Cost Concept** - record costs, not market value
- **Materiality Concept** - disregard immaterial transactions
- **Realization Concept** - recognize revenue when goods are delivered
- **Consistency Concept** – use the same method for recording transactions associated with specific assets/events
- **Entity Concept** - accounting for an entity, not individuals
- **Going Concern Concept** - assume continuing operations
- **Matching Concept** - match costs associated with revenue in same period
- **Money Measurement Concept** - money is the common measure

Accounting Choices

The accountant does have choices how to report different transactions; the same supply chain action can appear different ways in financial reports, and these can have different impact on the financial reports depending on how they are recorded. There are three sets of choices to be aware of:

- **Product costing**. The accountant is free to determine how to allocate overhead and how to categorize expenses to create as an insightful result as possible.
- **Depreciation method**. There are many ways to set the rate and period length for depreciation. For some types of assets, however, there are established accounting practices.
- **Asset or expense**. It is not always clear whether a transaction should be classified as a capital investment or an expense. One example is a prototype. The account has leeway in deciding how to classify this.
LIFO vs FIFO

There are two very different ways to estimate the value of goods in an inventory:

- **LIFO** (last-in, first-out) uses the most recent cost of inventory to assign to sales, which results in lower stated profits (assuming material costs increase over time). As a result, the remaining inventory can be undervalued.

- **FIFO** (first-in, first-out) uses the oldest cost of inventory, which results in potentially higher profits but near term tax obligations. As a result, the remaining inventory can be valued at current replacement cost.

Costing Systems

Cost Accounting

While cost accounting is a type of reporting, it has a different purpose than the financial reports. The purpose of cost accounting is purely internal to the firm – it is designed to measure costs to enable performance analysis, decision-making and internal reporting. So, while in financial reporting, costs are classified based on type of transaction for external reporting; in cost accounting, costs are classified based on needs of management for internal use (decision-making support). This means that cost accounting does not have to follow generally accepted accounting practice.

Overhead and Other Types of Costs

There are many types of costs to consider in the cost accounting process:

- **Fixed costs**: these costs do not vary with volume.
 - Ex. Monthly payments for plant, property, equipment

- **Variable and Semivariable costs**: costs that vary with volume
 - Ex. Cost for materials used to produce a product; more materials are needed to make more units of production
 - Ex. Semivariable: cost for salaried employees who get commission on sales

- **Direct costs**: costs that can be attributed to the production of a specific product
 - Ex. Cost for raw materials or labor hours to produce the product

- **Indirect costs (overhead)**: costs that cannot be attributed to the production of a specific product
 - Ex. Legal fees, SG&A, insurance

Much of the challenge of the cost system is to find a representative way to allocate the indirect costs – the **overhead costs**. These costs include depreciation of assets, supervision, quality control, and many other costs. To properly understand the cost of producing certain products/services, the cost to serve certain customers, or the cost to rely on certain suppliers, managers need to allocate these overhead costs in a representative way. This is not easy, since there is often no direct relationship between the cost and the product. Different cost systems
apply different logic for this allocation, as you will see below.

Traditional Cost Systems

The most common way to allocate costs is using a “traditional” cost system. With such a cost system, “standard costs” are calculated and used to allocate the overhead. The standard cost is the anticipated overhead cost for a process or product. A standard rate is then calculated based on some measure, e.g. throughput or labor hours. For instance, if total standard cost for manufacturing is $100,000 and budgeted throughput is 1,000, the standard rate to be applied is $100 per unit.

While these systems often perform well in many instances, there are certain instances where they are problematic. This includes instances when depreciation and other overhead costs account for a larger share and in complex environments with many (customized) products and/or processes.

Actual Cost Systems

Actual cost systems try to use actual costs or quantities to provide a more accurate picture compared to standard traditional systems. There are different variations:

- Actual cost using actual quantities and standard prices
- Actual cost using standard quantities and actual prices
- Actual cost using actual quantities and actual prices

It is however difficult to use actual prices since this will not be available until after the period is over.

Activity-Based-Costing (ABC)

An increasingly common way to handle the shortcoming of the other costing systems is to use an activity based costing approach. With this approach, relevant activities are defined, and all overhead costs are related to these activities. Based on the nature of the activity, a cost driver is identified which is then used to calculate the overhead cost for different objects (e.g. products, customer, suppliers).

The general steps to follow when using ABC are the following:

1. **Identify all relevant (repetitive) activities** (a formal approach would involve creating a process model). Note that a relevant activity is often of the form “verb+object”, e.g. “schedule production”.
2. **Identify the resources consumed in performing the activities**. Based on interviews, reports, or other information, identify the relevant resources consumed in each of the relevant activities.
3. **Determine the costs of the activities**. Based on the insights from step 2, find the total cost for each relevant activity.
4. **Determine cost-drivers of the activities**. This is the “unit” that drives the cost of the activity: units produced, batches, orders, shipments, etc.
5. *Determine cost-driver rate for the activities.* Based on the total cost of the relevant activity, use its total activity level to determine the rate for the cost-driver. For instance, if “number of orders” is the cost-driver, find the total number of orders over the accounting period, this is the activity level. To find the driver rate, divide total activity cost with the activity level.

6. *Trace costs to (secondary) cost objects.* Once you have all driver rates, use the information you have about each object to multiple that objects activity level with the driver-rate.

Activity-Based Costing provides a different and potentially more accurate cost for producing products and providing services. ABC can be helpful for decision makers assessing the profitability of various products, services or segmentations of those by customer or geography.

Working Capital

The working capital is a basic measure of both a company's efficiency and its short-term financial health. It is defined as:

\[
\text{Working capital} = \text{Current assets} - \text{Current liabilities}
\]

Positive working capital enables the firm to continue its operations and to satisfy both maturing short-term debt and upcoming operational expenses. Basically, they can pay their current bills when due. Negative working capital means that there are not enough current assets (cash, accounts receivable, inventory) to satisfy their current liabilities (accounts payable, maturing short-term debt and upcoming operational expenses). This may be good, if the firm collects its bills before paying suppliers. But it may also be a bad thing: the company cannot convert assets into cash quick enough to pay off liabilities. A company can have assets and profits but lack liquidity if assets can’t readily be converted to cash. Keep in mind that a firm can have a negative cash-to-cash cycle and positive working capital.

Sometimes working capital is analyzed through the “current ratio”. If this ratio is somewhere between 1 and 2, it is considered a healthy company.

\[
\text{Current ratio} = \frac{\text{Current assets}}{\text{Current liabilities}}
\]

Another test is called the “acid test”. It looks only at the current assets that can be quickly converted to cash. If the acid test is less than the current ratio, the current assets are highly dependent on inventory.

\[
\text{Acid test} = \frac{\text{Cash} + \text{Accounts Receivables} + \text{Short term investments}}{\text{Current liabilities}}
\]

A third important measure is the working capital turnover. This describes how effectively a company is using its working capital to generate revenues. In general, a higher turnover is preferable.
Working capital turnover = Sales/Working capital

Cash-to-Cash Cycle (CCC)
Also known as the Cash Conversion Cycle, the operating cycle or simply the cash cycle. This is a liquidity measure that can help a company plan its timing of working capital requirements. It measures the number of days that a company's cash is tied up in the production and sales process of its operations, and the benefit it gets from payment terms from its creditors. The shorter the cycle, the more liquid the company's working capital position.

The measure consists of the following three parts:
- **Days of Inventory Outstanding (DIO)** – this is the average inventory in the system, expressed in number of days
 \[
 DIO = \frac{\text{Average Inventory}}{\text{Cost of Sales}} \times 365
 \]
- **Days of Sales Outstanding (DSO)** – this is the average number of days to collect revenues from a sale, that is, the credit time given to customers
 \[
 DSO = \frac{\text{Average Accounts Receivable}}{\text{Total Sales}} \times 365
 \]
- **Days of Payables Outstanding (DPO)** – this is the average number of days before paying suppliers
 \[
 DPO = \frac{\text{Average Accounts Payable}}{\text{Cost of Sales}} \times 365
 \]

The Cash-to-cash Cycle, or the Cash Conversion Cycle, is then found as:

\[
\text{CCC} = DIO + DSO - DPO
\]

Supply Chain Cash Flows

There are three flows in the supply chain: the physical flow (goods), the financial flows (money), and the information flows (data). Since we may use contractors for many of our firm's operations, physical flows may not pass through our firm at all. Financial flows, however, will. Consequently, the design of the financial flows in the supply chain will have an impact on the value we are creating and therefore how valuable our supply chain designs are.

Investments and future cash flows
The primary source for capital for a firm is from its stockholders, or equity investors. These investors purchase stock in the firm to provide the firm with capital. The firm may then contract out with debtors, banks, or bond holders to raise additional capital that can be used for investments. There is a contractual agreement with these debtors. For instance, if you borrow money from a bank you will have a contract where you pay them back over a certain period of time.
This is not the case with investors. For these, the firm hopes to make enough money to pay them back. How? By investing the capital in operational assets to generate future cash flows. The goal is to manage the assets in the supply chain well enough so that revenues are greater than expenses.

Investors compare a firm’s result with the other investment options they have to create a portfolio of options that will give them future returns. So investors’ investment in a firm is a part of their portfolio. Given the firm’s ability to provide returns, it will be more or less attractive to investors.

Investment evaluation
Normally, those that have the money in an organization are also those that decides on which investments to make. Following general corporate finance guidelines, investments are evaluated according to the following steps:

1. Estimate the relevant cash flows – this includes also the cash outflow of making the investment
2. Calculate a figure of merit for the investment – this is to come up with the “value” of the investment
3. Compare the figure of merit to an acceptance criterion

Note that the same process may be used to evaluate projects.

EBIT and EBITDA
To separate different types of operating income, we will use the following concepts:

- **EBIT** – Earnings Before Interest and Taxes. These are the earnings, or the profit, before any financial aspects are added.
- **EBITDA** – Earnings Before Interest, Taxes, Depreciation and Amortization. These are the earnings, or the profit, before financial aspects as well as depreciation and amortization. That is, it is the gross income minus COGS and SG&A.

Projected cash flows
Cash coming in are considered positive cash flows; cash going out is considered negative cash flows. To handle the cash flows in the evaluation models, they are aggregated in “bins” – normally each year is a bin. Common practice assumes cash flows occur at the end of the projected period, or bin. The appropriate time horizon to consider depends – the decision makers simply have to come to an agreement. However, one must also consider cash flows at the end of the decision horizon – assets may be divested and, when they are, incur a salvage value.

Inflation
There are two different ways to think about inflation when evaluating cash flows:

- **Nominal cash flow**: incorporate inflation in price/cost. The inflation rates may differ between different components.
• **Real cash flows:** do not include inflation in price/cost.

The choice between nominal or real cash flows influences the discount rate used when calculating the figure of merit.

Relevant Cash Flows

We need to make sure that the cash flows we are projecting are relevant to the particular investment or project we are evaluating. So how do we determine what is a relevant flow?

1. **Cash flow principle:** only cash flows where money moves are relevant. That is, a cash flow either goes out of the firm or comes into the firm. For instance, depreciation is **not** a movement of money, so it is not a relevant cash flow. However, depreciation also affects taxes, which is a relevant cash flow.

2. **With-without principle:** only cash flows that are different with the investment compared to without the investment are relevant to the decision. Note that this is different from “before and after”, since we are looking into the future at two different worlds – we are only interested in the difference between those worlds. For instance, if revenues will not differ between our alternatives, then they are not relevant cash flows.

Note that this also means that sunk costs are not relevant cash flows. Opportunity cost of assets should, however, be included in the evaluation. It differs between the alternatives and is thus a relevant cash flow.

Free Cash Flows

The free cash flows (FCF) are the funds available to (the equity) investors after the firm invests capital and pays taxes. It provides a convenient way to calculate cash flows to compare investments, by relying on posts in the financial reports rather than separate line items. For free cash flow calculations, we need to consider revenues, COGS, operating expenses, and taxes as well as capital expenditures and working capital. Note that some of these are found in the income statement whereas others are found in the balance sheet. Starting with the income statement, relevant cash flows include taxes.

To make sure we capture the effect of taxes, we make use of the Net Operating Profit After Taxes (NOPAT).

\[
\text{NOPAT}_t = (1 - \text{tax rate}) \times \text{EBIT}_t.
\]

Using NOPAT, which takes depreciation into account, we can find the relevant cash flows of the income statement by adding the depreciation (DA) “back again”. From the balance sheet, we get the capital expenditure and the change in net working capital requirement.

Combing the data from the income statement and the balance sheet we get

\[
\begin{align*}
\text{FCF}_t &= \text{NOPAT}_t + \text{DA}_t - \text{CapEx}_t - \Delta \text{NetWorkingCapital}_t \\
\text{FCF}_t &= (1 - \text{tax rate}) \times \text{EBIT}_t + \text{DA}_t - \text{CapEx}_t - \Delta \text{NetWorkingCapital}_t
\end{align*}
\]
Working Capital Cash Flows
The working capital cash flow is the net change in working capital requirements from the previous period. For instance, a decrease in working capital requirements means that more cash is freed up (note the minus sign in the FCF formula). Note that working capital cash flows occur when the change takes place. For instance, a change in inventory level affects working capital requirements when we next replenish stock.

Discounted Cash Flow Analysis
We now focus on the two subsequent steps in investment evaluation: how to calculate a figure of merit based on the projected relevant cash flows and compare this figure to an acceptance criterion. The basic idea underlying these calculations is that today’s money is worth more than money in the future. To correct for this when we make investment decisions, we use a discount rate to find today’s value of future cash flows. Why is today’s cash more valuable than tomorrow’s? There are primarily three reasons:

- **Opportunity cost** – not having the money now results in foregone investment returns
- **Inflation** – this reduces purchasing power over time
- **Risk/uncertainty** – receipt of cash is not guaranteed over time

Owing to this, we need to calculate the present value of future cash flows when evaluating supply chain designs. As we saw in this lesson, there are several ways to do this. Common for all discounted cash flow analysis, is that it quantifies the value created by investments.

Figure of Merit
The figure of merit is a single number that estimates the economic value of an investment. This number can be compared with a criterion established by the firm. There is no universal criterion. There are also several different figures of merit, which you will see more of below.

Payback Period
The payback period is the time until the cumulative cash flow is equal to our initial investment. Using this figure of merit, the acceptance criterion is to invest if the payback period is shorter than the cut-off point. The firm decides the cut-off point.

This is a fairly simple measure, which is easy to communicate. The main drawback is that it does not consider the timing of cash flows. For instance, cash up front is not valued differently than cash later. Neither does it consider cash flows after the payback-period, even though these may be significant.

Return on Assets (ROA)
The return on assets (ROA) is defined by:

\[
\text{ROA} = \frac{\text{Net income}}{\text{Assets}}
\]
The acceptance criterion using this figure of merit is to make an investment if ROA is greater than some target return. “Assets” are for an investment the total investment in capital, which will depreciate over time. This means that later incoming cash flows are given a higher weight in the calculation, even though earlier cash flows are generally more desirable.

ROA is very much linked to the financial statement. However, it is based on accounting calculations and not cash flows. Also, just like the payback period, it does not consider the timing of cash flows.

Present Value
The present value of a future cash flows is given by:

\[
PV = \frac{FV}{(1+r)^n}
\]

where \(PV\) is present value, \(FV\) is future value, \(r\) is the discount rate for the period, and \(n\) is the number of periods. Note that you must have the same time period for your rate and your number of periods. Often, we stick to annual values.

The discount rate is based on investors’ expected rate of return. This is sometimes referred to as the hurdle rate – it sets the hurdle by which we have to run our operations to exceed the expectations of our investors.

Net Present Value
The net present value (NPV) is the sum of all discounted cash flows from all relevant future periods of an investment:

\[
NPV = c_0 + \frac{c_1}{(1+r)^1} + \frac{c_2}{(1+r)^2} + \ldots + \frac{c_T}{(1+r)^T}
\]

where \(c_i\) represents the net cash flow in period \(i\). Note that we are not discounting the cash flow of period 0 – this is the present value already.

NPV is easily implemented in your spreadsheet software. If using the built-in function, keep in mind that period 1 is the first period in the function, period 0 cash flows need to be added separately.

The net present value is a figure of merit that can be used to evaluate an investment on its own or compare different investments with each other. The acceptance criterion for a single investment is that the NPV is greater than zero.

Internal Rate of Return
While the NPV has a lot of nice properties for a figure of merit, it is dependent on picking the right discount rate. The internal rate of return (IRR) addresses this problem by, instead of considering the NPV given a certain discount rate, considers the discount rate at which the NPV=0. Consequently, management can compare the target return with the IRR. The criterion
of acceptance is thus to invest as long as the target rate of return is between zero and the IRR.

The IRR is found as the solution to:

\[0 = c_0 + c_1/(1+\text{IRR}) + c_2/(1+\text{IRR})^2 + \ldots + c_T/(1+\text{IRR})^T \]

There is no closed form solution for this. There are however spreadsheet functions available to calculate this.

Terminal Value

We may want to consider how assets that last beyond our financial projections should be handled. We have touched upon the salvage value before. There may be cash flows to consider even if the investment is not salvaged – maintenance, certain inventory policies, etc. The terminal value handles all the cash flows that are incurred after period \(T \), which is the last period of our projections. After period \(T \), cash flows are assumed to be stable. There are normally two approaches:

- **Perpetuity**: estimated value of stable cash flows that continue indefinitely
- **Annuity**: estimated value of stable cash flows for definite period beyond the unique projections

You can incorporate growth into the analysis as long as growth is stable.

A perpetuity is geometric series that converges to:

\[PV = \frac{C}{r} \]

where \(C \) is the stable cash flow per period. An annuity is the net present value of stable cash flows over a given number of periods. The annuity is thus given by:

\[PV = \frac{C}{r} - \left(\frac{C}{r}\right) \left(\frac{1}{(1+r)^T}\right) \]

Inventory Holding Cost

In inventory management we use a holding cost (or carrying cost) for calculating how much inventory to keep. This is an annual cost, and it consists of several components:

- **Capital**
 - Opportunity cost of capital
- **Operating**
 - Warehouse (power, property taxes, etc.)
 - Equipment
 - Labor (handling, stock keeping, etc.)
 - Disposal, scrap (direct or third party costs)
- **Lost revenue**
 - Obsolescence
 - Depreciation (real market value)
- Deterioration
- Shrinkage
- Damage
- Insurance to prevent lost revenue

Oftentimes, we refer to the last two categories as non-capital holding costs. But how is this incorporated into discounted cash flow analysis?

Well, these cash flows have to be evaluated like any other cash flows:
- Opportunity cost of capital is implicitly included in the discount rate, and is not a relevant cash flow.
- The non-capital costs (operating cost, lost revenue) are relevant, projected cash flows.

Consequently, when you reduce inventory, you get the working capital cash once to reinvest and you avoid operating expenses and/or lost revenue over time.

Defining Supply Chain Finance

Supply chain finance has been used as a broad term. It can describe how we look at the supply chain through a financial lens. It helps us identify the financial impact from supply chain transactions and how supply chain decisions impact financial statements. But in recent years, the definition of supply chain finance has been formalized as a method to provide liquidity to buyers and sellers. This typically means payment terms of Net 30 or 2% 10, Net 30.

The move to a focus on liquidity stems from the global financial crisis of 2008, when the issue of getting cash to fund business operations was exasperated. In general, buyers are increasingly looking for ways to reduce their net operating working capital requirements – that is, the funds necessary to continue operation of the business. Many buyers try extend the payment cycle from 30 days anywhere to 150+ days. Therefore, many suppliers have to wait a long time to get paid and need to cash to pay bills while waiting for the invoice payment.

Supply Chain Finance (SCF) is the set of solutions that allow a company to finance its own working capital, leveraging its role within the supply chain and its relationships with other players in the chain. Supply Chain Finance has many variation among different solutions and also has different terminology across users.

SCF provides financing
- “Financing is the act of providing funds for business activities, making purchases or investing.”
- Third parties often involved: Banks, other financial institutions.
- Providing funding/capital often to consumers (e.g. for mortgages), and businesses (capital improvements).
- Supply chains ‘finance’ or fund their payables (and sometimes inventory).
There are two general options for financing (debt and equity) when applying these options to Supply Chain Finance (SCF). Most are using debt – or loans – to provide liquidity – cash – to the firm. Some entail selling the asset (e.g. a receivable from the buyer), usually at a deep discount. There are many variations, and each have advantages and disadvantages.

Liquidity
Liquidity is the degree to which an asset or security can be quickly bought or sold in the market without affecting the asset’s price or the ability to quickly convert assets into cash at value. Liquidity allows the business to operate, to pay bills, to buy materials, etc.

Liquidity and the CCC
Consider the Cash Conversion Cycle, CCC (also known as the cash-to-cash conversion cycle). There are three components in the CCC: the cycle time to pay suppliers, the cycle time to get paid by customers, and the cycle time to produce and sell a product (from order entry time to time of sale). To provide more liquidity the firm can: arrange for faster payments from customers; work to reduce the production and sales cycle times, and/or slow down payments to suppliers.

Cash Conversion Cycle Acronyms
- DIO = Days of Inventory Outstanding ➔ how long it takes to produce and sell
- DSO = Days of Sales Outstanding ➔ how long it takes to collect payment
- DPO = Days of Payables Outstanding ➔ how long the company takes to pay suppliers
- CCC = Cash Conversion Cycle ➔ how long to convert cash ➔ inventory ➔ AP ➔ cash

Supply Chain Finance: How does it work?
Case: Raw material purchase
- Situation: Buyer agrees to pay seller in X days
- Seller can wait X days for payment or consider other options to get cash sooner

Figure 17. How does Supply Chain Finance work?
Basic Factoring
If the seller does not want to wait. One seller option is called factoring:

- Sell the receivable to a third party (e.g. collections agency), called the Factor
- The receivable is an obligation of the buyer to pay the seller

![Diagram of Basic Factoring]

Factoring with Recourse: The Factor can go back to seller to collect if the buyer fails to pay

- If the Buyer fails to pay the Factor, then the Factor can collect from the seller.
- The percentage off invoice will be lower because the seller still bears the risk if the customer does not pay.

Factoring without Recourse: The Factor has no option to go back to the seller to collect, can only collect from the buyer.

- If the Buyer fails to pay the Factor, then the Factor is stuck.
- No option to go back to the seller to collect.
- The percentage off invoice will be higher because the Factor bears the risk if the customer does not pay.

There are many options to finance receivables such as factoring. This is probably the most common but can come at a high cost, percentage of the invoice. Other options vary based on factors including: loan or sale of the receivable, timing of the payments, which party bears the risk of repayment, use of different types of collateral, who initiates the arrangement. Each option has different impact on net operating working capital.

Options for Liquidity in the Supply Chain
<table>
<thead>
<tr>
<th>Options for liquidity</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Invoice Discount** | - Initiated by the seller
- No third party involved
- Seller offers lower price for early payment
- Buyer chooses to exercise the option to pay early at a discount
- The payment amount Z will be lower than the invoice amount
- The timing of the payment in exchange for the discount is determined by the seller, but it will be shorter than the original payment term |
| **Financing a loan (Invoice Discount)** | - Use the receivable as collateral for the basis of a loan (e.g. from a bank)
- Initiated by the seller
- Third party involved
- Seller uses invoice as collateral for loan with 3rd Party (e.g. Bank)
- Third party issues loan to seller, uses seller credit risk to set the rate |
| **Forfaiting** | - Used for exports/imports
- Initiated by the seller
- Third party involved, usually with expertise in export/import
- Seller sells the receivable to the third party at a discount
- Third party buys receivable at a discount, collects from buyer |
| **Reverse Factoring** | - Initiated by the buyer who also initiates the financing options (loans)
- Third party involved through the buyer
- Seller has the option to use the financing options offered
- Third party offers to finance receivable based on the buyer’s credit risk, meaning lower cost loan |
| **Dynamic (Invoice) Discount** | - Initiated by the seller
- No third party involved
- Seller offers lower price for early payment, timing of payment and discount rate varies
- Buyer negotiates timing and rates and chooses to exercise the option to pay early at a discount
- The payment amount Z will be lower than the invoice amount |
| **Inventory Financing** | - Initiated by the seller
- Third party involved
- Seller arranges line-of-credit or loan in order to purchase materials
- Third party offers loan with seller's inventory as collateral
- Useful when seller must pay its suppliers before being able to sell FGI; also used to build inventory prior to peak demand season |
| **Invoice Auction** | - Initiated by the seller
- Third parties invited
- Seller arranges an auction process to solicit bids for the invoice (buyer obligation to pay); seller can use existing auction platform
- Highest bidder wins
- Like Factoring without Recourse, but using an auction to find third party |

Table 5. Options for liquidity in the Supply Chain
Advanced Options
Utilize automated processes
- Less uncertainty in timing
- Lower cost loan operations
Solicit and use more detailed data about seller and buyer
- More informed risk assessments
- Can result in lower risk and therefore lower cost loans
- Favorable rates for increased visibility and faster process due to automated info sharing, better risk assessment
Proactive use of information technology for faster and more informed decision making

Other Options to Finance the Supply Chain
Use operational measures to reduce the need for working capital:
- Consignment inventory (customers push the capital requirement onto the supplier)
- Direct shipments (reduce the need to tie up capital in warehouses)
- Various forms of collaboration – vendor managed inventory (VMI), sales and operations planning (S&OP), collaborative planning, forecasting and replenishment (CPFR), continuous replenishment (CRP), etc. Each of may reduce the amount of inventory necessary to maintain service levels

Benefits of Supply Chain Finance
There are many benefits of supply chain finance. They include:
- Potential to reduce the Net Operating Working Capital Requirements (NOWC): lower for both seller and buyer via quicker cash to seller, lower inventories
- Potential lower cost materials: via discounts; lower operating costs with use of technology for information
- Potentially faster cycle times: via faster cash, faster operations; reducing CCC
- Potentially more robust supply chain: via collaborative financial connections and ensuring supplier health
- Benefits to third parties: More customers for loans, potentially lower risk

Analyzing Financial Performance
We might ask ourselves, who cares about a firm’s financial performance? The obvious answer is investors, executives in the firm, and employees of the firm (if it affects their bonus). Beyond who this matters to, many supply chain professionals ask further questions including: How do you analyze financial performance? How do you measure it? How do financial analysis and measurement approaches apply to supply chain management? We will discuss these questions in the next section.

The main goal of a CEO is to provide shareholder value. Drivers of shareholder value include: revenue growth, operating margin, and asset productivity. To monitor this, CEOs and other executives generally need a scorecard to assess these drivers.
Balanced Scorecard

Ultimately, causal paths from all the measures on a Scorecard should be linked to financial objectives. We have found that companies use three financial themes to achieve their business strategies:

- Revenue Growth and Mix
- Cost Reduction / Productivity Improvement
- Asset Utilization / Investment Strategy

Drivers of Shareholder Value

The drivers of shareholder value are: Revenue Growth, Operating Margin and Asset Productivity.

![Diagram of Drivers of Shareholder Value]

Figure 21. Drivers of shareholder value

Ratio Analysis

Ratio Analysis is the mathematical comparison of a financial statement accounts or categories. These relationships between the financial statement accounts help investors, creditors, and internal company management understand how well a business is performing and of areas needing improvement. Potential comparison areas on each statement or sheet:

<table>
<thead>
<tr>
<th>Income Statement</th>
<th>Balance Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td>Cash & Equivalents</td>
</tr>
<tr>
<td>Cost of Goods Sold</td>
<td>Accounts Receivable</td>
</tr>
<tr>
<td>Gross Profit</td>
<td>Inventories</td>
</tr>
<tr>
<td>SG&A Expenses</td>
<td>Total Current Assets</td>
</tr>
<tr>
<td>Depreciation & Amortization</td>
<td>Net Property/Plant/Equipment</td>
</tr>
<tr>
<td>EBIT</td>
<td>Total Long-Term Assets</td>
</tr>
<tr>
<td>Interest Expense</td>
<td>Total Assets</td>
</tr>
<tr>
<td>Income Taxes</td>
<td>Accounts Payable</td>
</tr>
<tr>
<td>Net Income</td>
<td>Total Current Liabilities</td>
</tr>
<tr>
<td></td>
<td>Long Term Debt</td>
</tr>
<tr>
<td></td>
<td>Total Liabilities</td>
</tr>
<tr>
<td></td>
<td>Common Stock</td>
</tr>
<tr>
<td></td>
<td>Retained Earnings</td>
</tr>
<tr>
<td></td>
<td>Total Stockholder’s Equity</td>
</tr>
<tr>
<td></td>
<td>Total Liabilities & Equity</td>
</tr>
</tbody>
</table>

Table 6. Potential comparison areas on each statement
Overall measure of financial performance
Is there a single metric that can reflect the firm’s financial performance for investors? Or executives?

• Return on Equity

\[ROE = \frac{Net \ Income}{Equity} \]

• Return on Assets

\[ROA = \frac{Net \ Income}{Total \ Assets} \]

Specific measures of financial performance
Revenue growth

• Sales growth = \(\frac{Sales_t}{Sales_{t-1}} - 1 \)
• Compound Annual Growth Rate (CAGR) = \((\frac{Sales_t}{Sales_{t-n}})^{1/n} - 1 \)

Operating margin

• Gross margin = Gross Income / Sales
• Operating margin = Operating Income / Sales
• Net margin = Net Income / Sales

Asset productivity

• Asset turnover = Sales / Total Assets
• Inventory turnover = COGS / Average Inventory
• Accounts receivable turnover = Credit Sales / Average Accounts Receivable
• Accounts payable turnover = COGS / Average Accounts Payable
• Days of inventory outstanding = Average Inventory / (COGS/365)

Ratio Analysis Advice
There are not any “correct” values for ratios. Ratio values need to be understood in context such as: compare with industry averages, compare with specific competitors; and/or observe trends over time. You will need to develop a framework of several ratios to monitor. In combination, these clues may tell an interesting story.

DuPont Analysis
DuPont analysis is based on a return-on-investment formula developed in 1914 by a DuPont explosives salesman named Donaldson Brown and used by the company. Mr. Brown later used it as CFO at General Motors, but it was already known as the DuPont formula.

\[R = T \times P \]

Where:
\(R \) = rate of return on capital invested
\(T \) = rate of turnover of invested capital
\(P \) = percentage of profit on sales
In essence, it is a simple combination of two ratios:

\[\text{ROA} = \text{Net Margin} \times \text{Asset Turnover} \]

\[\text{Net Margin} = \frac{\text{Net Income}}{\text{Sales}} \quad \text{Asset Turnover} = \frac{\text{Sales}}{\text{Total Assets}} \]

The formula commonly used today focuses on ROE for DuPont analysis incorporates financial leverage:

\[\text{ROE} = \text{Net Margin} \times \text{Asset Turnover} \times \text{Financial Leverage} \]

\[\text{Net Margin} = \frac{\text{Net Income}}{\text{Sales}} \]

\[\text{Asset Turnover} = \frac{\text{Sales}}{\text{Total Assets}} \]

\[\text{Financial Leverage} = \frac{\text{Total Assets}}{\text{Equity}} \]

GMROI: Gross Margin Return on Investment
GMROI has a narrower focus than DuPont and is useful in evaluating inventory decisions, and their impact on profitability.

\[\text{GMROI} = \text{Gross Margin} \times \text{Inventory Turnover} \]

\[\text{Gross Margin} = \frac{\text{Gross Profit}}{\text{Sales}} \]

\[\text{Inventory Turnover} = \frac{\text{Sales}}{\text{Inventory}} \]

ROIC
ROIC (Return on Invested Capital) is an overall measure of financial performance. This includes returns on all capital for investors seeking a return, not only on equity. ROIC is a good measure for supply chain performance. It is not confounded by financing strategies. It shows the fundamental earning power of the firm, i.e. created by operations.

\[\text{ROA} = \text{Net Income} / \text{Total Assets} \]

\[\text{ROE} = \text{Net Income} / \text{Equity} \]
Both measures can be distorted by financial leverage, i.e. more debt.

\[
\text{ROIC} = \frac{\text{NOPAT}}{\text{Invested Capital}}
\]

Net Operating Profit After Tax (NOPAT)
- NOPAT = EBIT (1 – Tax rate)
- Earnings after tax as if it were all equity financed (i.e., not considering interest expense or tax books)

Invested Capital (IC)
- IC = Interest – Bearing Debt + Equity
- Sum of all sources of cash on which a return must be earned (i.e., not including accounts payable)
- You may want to subtract excess cash
- Prefer the book value of Invested Capital (i.e. the value invested) rather than the market value

RONA
RONA (Return on Net Assets) is similar to ROIC and similar to ROCE (Return on Capital Employed). It is a return on assets that are expected to produce profit.

\[
\text{RONA} = \frac{\text{NOPAT}}{\text{Net Assets}}
\]

Net Assets
- NA = Fixed Assets + Non-cash Working Capital
- NA = Total Assets – Current Liabilities – Cash

Learning Objectives
- Understand the basics of financial reporting and accounting
- Understand the impact of depreciation on the financial reports
- Introduce cost accounting/cost systems
- Become familiar with the principles of the different cost systems
- Learn how to perform simple activity based costing (ABC)
- Become familiar with working capital requirements and the Cash Conversion Cycle
- Understand relevant cash flows and how to estimate them
- Understand and learn how to find free cash flows from the financial reports
- Determine the free cash flows over time for an investment/project
- Understand the underlying reasons for discounted cash flow (DCF) analysis
- Review how to calculate the Net Present Value (NPV) and the Internal Rate of Return (IRR) of an investment, and how to use these figure of merits for evaluating investments
- How to handle inventory reductions in DCF analysis
- Understand change in payment terms to get cash to fund operations
• Recognize supply chain finance definition and that it has variations
• Become familiar with the Cash Conversion Cycle
• Review different types of finance receivables
• Recognize variations across factoring in financing receivables
• Understand different options to finance supply chain
• Introduction to effective analysis to drivers of shareholder value
• Recognize financial metrics that can assess supply chain performance and guide strategy
• Review which metrics are better at assessing total supply chain performance

References

• Anthony, R.N. and Breitner, L.K. Essentials of Accounting. 10th ed. Prentice Hill, 2009, see pages 1-66 [this is a workbook that you should work through, it is not enough just to read it!]

For Costing Systems

• Measure Costs Right, Make the Right Decisions, Harvard Business Review, Sept-Oct 1
Organizational, Process, and Performance Metric Design

Summary
We also review three areas of “soft” design: organizations, processes, and metrics.

Organizational design for supply chains has evolved as the profession has changed. Supply chain organizations started as separate silo-ed functions or activities spread out across different larger divisions, such as finance, manufacturing, and marketing. The areas started combining into materials management (covering the flow of inbound materials) and physical distribution (covering the movement of final products to customers). Logistics groups emerged later to bring these two functions together in order to work out trade-offs between the sometimes conflicting goals of inbound and outbound management. Currently, there are various forms of organizations used across different companies. The main perspectives differ in terms of viewing supply chains or logistics as a set of functions, as a program, or within a matrix. The matrix form is most common in larger global firms. In these cases, logistics is a horizontal function that interacts directly with each vertical business unit providing shared services.

The key trade-off involved with supply chain organizational design is whether to centralize or decentralize different activities. Centralization implies that all decisions are made at a headquarters while decentralization moves this to the regions or individual business units. Each has a role with the general rule of thumb shifting most procurement, long-range planning, and new product activities to central and keeping daily operations decentralized.

Processes within supply chains are essentially transformations of inputs into outputs. Procurement transforms an order into product. Transportation converts material at a distribution center to product at the customer location. Each of these processes can be managed individually or looked at as within a greater system. The different processes within the supply chain should be designed to complement each other.

Metrics follow the process structure. All metrics can be boiled down to utilization, productivity, or effectiveness metrics. Utilization measures inputs compared to some norm (capacity, standard, etc.). Productivity or efficiency compares inputs to outputs. Effectiveness compares output to some norm value. The different metrics can be evaluated for robustness, integration, usefulness, and validity. There is no single best metric, however, they will all have trade-offs between these criteria. This is why systems of metrics should be used in a balanced scorecard framework.
Key Concepts

Supply Chain Organization Design

Centralization vs. Decentralization
Organizational design centers on whether to centralize or decentralize an activity. Each has a place and there are basic trade-offs involved.

Centralized
- Leverages economies of scale
- Harmonizes policies and practices
- Allows for optimal (global) solutions

Decentralized
- Allows decision making to be closer to customer
- Allows decisions to reflect local cultures and customs
- Allows for optimal solutions within a region
- Allows business units to act autonomously

Supply Chain Processes
Supply chain processes can be thought of transformations of one flow unit to another.

<table>
<thead>
<tr>
<th>Process</th>
<th>Flow Unit</th>
<th>Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Fulfillment</td>
<td>Orders</td>
<td>Receipt of order => Delivery of product</td>
</tr>
<tr>
<td>Production</td>
<td>Products</td>
<td>Receipt of materials => Completion of product</td>
</tr>
<tr>
<td>Outbound Logistics</td>
<td>Products</td>
<td>End of manufacturing => Delivery to customer</td>
</tr>
<tr>
<td>Procurement</td>
<td>Supplies</td>
<td>From issuing a purchase order => Receipt of supplies</td>
</tr>
<tr>
<td>Customer Service</td>
<td>Customers</td>
<td>Arrival of customer => Departure</td>
</tr>
<tr>
<td>New Product Development</td>
<td>Projects</td>
<td>Product development start => Launch</td>
</tr>
<tr>
<td>Cash Cycle</td>
<td>Cash</td>
<td>Expenditure of funds => Collection of revenue</td>
</tr>
</tbody>
</table>

Table 7. Supply chain processes
Supply Chain Metric Design

Performance Metrics
Metrics can be divided into Utilization, Productivity, and Effectiveness measures.

Performance Metric Criteria and Trade-offs
Metrics can be evaluated according to several metrics – but they will always have trade-offs.

- **Robust**: The metric is interpreted similarly by all users, is comparable across time, location and organizations, and is repeatable.
- **Valid**: The metric accurately captures events and activities measured and controls for exogenous factors.
- **Integrative**: The metric includes all relevant aspects of the process and promotes coordination across functions and divisions (and even enterprises).
- **Useful**: The metric is readily understandable by decision makers and provides a guide to action.

Balanced Metrics

This work is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-nc-sa/4.0/).
Metric systems should be designed to balance across three key areas: Asset utilization (utilization metrics), Efficiency (productivity metrics), and Customer Response (effectiveness metrics). Different industries will emphasize different aspects of process performance.

Learning Objectives
- Understand how supply chain organizations are typically and can be organized and why
- Learn strengths and weaknesses of centralized versus decentralized organizations
- Gain insights into supply chain processes
- Able to develop and design performance metric systems for supply chains

References